What is l? School curriculum: what is n in physics? Physics and basic physical quantities

    In mathematics, symbols are used throughout the world to simplify and shorten text. Below is a list of the most common mathematical notations, corresponding commands in TeX, explanations and examples of use. In addition to those indicated... ... Wikipedia

    A list of specific symbols used in mathematics can be seen in the article Table of mathematical symbols Mathematical notation (“the language of mathematics”) is complex graphics system notation used to present abstract ... ... Wikipedia

    List of sign systems (notation systems, etc.) used human civilization, with the exception of scripts, for which there is a separate list. Contents 1 Criteria for inclusion in the list 2 Mathematics ... Wikipedia

    Paul Adrien Maurice Dirac Paul Adrien Maurice Dirac Date of birth: 8& ... Wikipedia

    Dirac, Paul Adrien Maurice Paul Adrien Maurice Dirac Date of birth: August 8, 1902(... Wikipedia

    Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz ... Wikipedia

    This term has other meanings, see Meson (meanings). Meson (from other Greek μέσος middle) boson of strong interaction. In the Standard Model, mesons are composite (not elementary) particles consisting of even... ... Wikipedia

    Nuclear physics ... Wikipedia

    Alternative theories of gravity are usually called theories of gravity that exist as alternatives general theory relativity (GTR) or significantly (quantitatively or fundamentally) modifying it. Towards alternative theories of gravity... ... Wikipedia

    Alternative theories of gravity are usually called theories of gravity that exist as alternatives to the general theory of relativity or significantly (quantitatively or fundamentally) modify it. Alternative theories of gravity are often... ... Wikipedia

Studying physics at school lasts several years. At the same time, students are faced with the problem that the same letters represent completely different quantities. Most often this fact concerns Latin letters. How then to solve problems?

There is no need to be afraid of such a repetition. Scientists tried to introduce them into the notation so that identical letters would not appear in the same formula. Most often, students encounter the Latin n. It can be lowercase or uppercase. Therefore, the question logically arises about what n is in physics, that is, in a certain formula encountered by the student.

What does the capital letter N stand for in physics?

Most often in school courses it occurs when studying mechanics. After all, there it can be immediately in spirit meanings - power and strength normal reaction supports. Naturally, these concepts do not overlap, because they are used in different sections of mechanics and are measured in different units. Therefore, you always need to define exactly what n is in physics.

Power is the rate of change of energy in a system. This is a scalar quantity, that is, just a number. Its unit of measurement is the watt (W).

The normal ground reaction force is the force exerted on the body by the support or suspension. In addition to the numerical value, it has a direction, that is, it is a vector quantity. Moreover, it is always perpendicular to the surface on which the external influence is made. The unit of this N is newton (N).

What is N in physics, in addition to the quantities already indicated? It could be:

    Avogadro's constant;

    magnification of the optical device;

    substance concentration;

    Debye number;

    total radiation power.

What does the lowercase letter n stand for in physics?

The list of names that may be hidden behind it is quite extensive. The notation n in physics is used for the following concepts:

    refractive index, and it can be absolute or relative;

    neutron - a neutral elementary particle with a mass slightly greater than that of a proton;

    rotation frequency (used to replace the Greek letter "nu", since it is very similar to the Latin "ve") - the number of repetitions of revolutions per unit of time, measured in hertz (Hz).

What does n mean in physics, besides the quantities already indicated? It turns out that it hides the fundamental quantum number (quantum physics), concentration and Loschmidt constant (molecular physics). By the way, when calculating the concentration of a substance, you need to know the value, which is also written with the Latin “en”. It will be discussed below.

What physical quantity can be denoted by n and N?

Its name comes from the Latin word numerus, translated as “number”, “quantity”. Therefore, the answer to the question of what n means in physics is quite simple. This is the number of any objects, bodies, particles - everything about which we're talking about in a specific task.

Moreover, “quantity” is one of the few physical quantities that do not have a unit of measurement. It's just a number, without a name. For example, if the problem involves 10 particles, then n will simply be equal to 10. But if it turns out that the lowercase “en” is already taken, then you have to use a capital letter.

Formulas containing capital N

The first of them determines power, which is equal to the ratio of work to time:

IN molecular physics There is such a thing as a chemical amount of a substance. Denoted by the Greek letter "nu". To count it, you should divide the number of particles by Avogadro's number:

By the way, the last value is also denoted by the so popular letter N. Only it always has a subscript - A.

To determine the electric charge, you will need the formula:

Another formula with N in physics - oscillation frequency. To count it, you need to divide their number by time:

The letter “en” appears in the formula for the circulation period:

Formulas containing lowercase n

In a school physics course, this letter is most often associated with the refractive index of a substance. Therefore, it is important to know the formulas with its application.

So, for the absolute refractive index the formula is written as follows:

Here c is the speed of light in a vacuum, v is its speed in a refractive medium.

The formula for the relative refractive index is somewhat more complicated:

n 21 = v 1: v 2 = n 2: n 1,

where n 1 and n 2 are the absolute refractive indices of the first and second medium, v 1 and v 2 are the speeds of the light wave in these substances.

How to find n in physics? A formula will help us with this, which requires knowing the angles of incidence and refraction of the beam, that is, n 21 = sin α: sin γ.

What is n equal to in physics if it is the refractive index?

Usually the tables give values ​​for absolute refractive indices various substances. Do not forget that this value depends not only on the properties of the medium, but also on the wavelength. Table values ​​of the refractive index are given for the optical range.

So, it became clear what n is in physics. To avoid any questions, it is worth considering some examples.

Power task

№1. During plowing, the tractor pulls the plow evenly. At the same time, he applies a force of 10 kN. With this movement, it covers 1.2 km within 10 minutes. It is necessary to determine the power it develops.

Converting units to SI. You can start with force, 10 N equals 10,000 N. Then the distance: 1.2 × 1000 = 1200 m. Time left - 10 × 60 = 600 s.

Selection of formulas. As mentioned above, N = A: t. But the task has no meaning for the work. To calculate it, another formula is useful: A = F × S. The final form of the formula for power looks like this: N = (F × S) : t.

Solution. Let's first calculate the work and then the power. Then the first action gives 10,000 × 1,200 = 12,000,000 J. The second action gives 12,000,000: 600 = 20,000 W.

Answer. The tractor power is 20,000 W.

Refractive index problems

№2. The absolute refractive index of glass is 1.5. The speed of light propagation in glass is less than in vacuum. You need to determine how many times.

There is no need to convert data to SI.

When choosing formulas, you need to focus on this one: n = c: v.

Solution. From this formula it is clear that v = c: n. This means that the speed of light in glass is equal to the speed of light in a vacuum divided by the refractive index. That is, it decreases by one and a half times.

Answer. The speed of light propagation in glass is 1.5 times less than in vacuum.

№3. There are two transparent media available. The speed of light in the first of them is 225,000 km/s, in the second it is 25,000 km/s less. A ray of light goes from the first medium to the second. The angle of incidence α is 30º. Calculate the value of the angle of refraction.

Do I need to convert to SI? Speeds are given in non-system units. However, when substituted into formulas, they will be reduced. Therefore, there is no need to convert speeds to m/s.

Selecting the formulas necessary to solve the problem. You will need to use the law of light refraction: n 21 = sin α: sin γ. And also: n = с: v.

Solution. In the first formula, n 21 is the ratio of the two refractive indices of the substances in question, that is, n 2 and n 1. If we write down the second indicated formula for the proposed media, we get the following: n 1 = c: v 1 and n 2 = c: v 2. If we make the ratio of the last two expressions, it turns out that n 21 = v 1: v 2. Substituting it into the formula for the law of refraction, we can derive the following expression for the sine of the refraction angle: sin γ = sin α × (v 2: v 1).

We substitute the values ​​of the indicated speeds and the sine of 30º (equal to 0.5) into the formula, it turns out that the sine of the refraction angle is equal to 0.44. According to the Bradis table, it turns out that the angle γ is equal to 26º.

Answer. The refraction angle is 26º.

Tasks for the circulation period

№4. The blades of a windmill rotate with a period of 5 seconds. Calculate the number of revolutions of these blades in 1 hour.

You only need to convert time to SI units for 1 hour. It will be equal to 3,600 seconds.

Selection of formulas. The period of rotation and the number of revolutions are related by the formula T = t: N.

Solution. From the above formula, the number of revolutions is determined by the ratio of time to period. Thus, N = 3600: 5 = 720.

Answer. The number of revolutions of the mill blades is 720.

№5. An airplane propeller rotates at a frequency of 25 Hz. How long will it take the propeller to make 3,000 revolutions?

All data is given in SI, so there is no need to translate anything.

Required Formula: frequency ν = N: t. From it you only need to derive the formula for the unknown time. It is a divisor, so it is supposed to be found by dividing N by ν.

Solution. Dividing 3,000 by 25 gives the number 120. It will be measured in seconds.

Answer. An airplane propeller makes 3000 revolutions in 120 s.

Let's sum it up

When a student encounters a formula containing n or N in a physics problem, he needs deal with two points. The first is from what branch of physics the equality is given. This may be clear from the title in the textbook, reference book, or the words of the teacher. Then you should decide what is hidden behind the many-sided “en”. Moreover, the name of the units of measurement helps with this, if, of course, its value is given. Another option is also allowed: look carefully at the remaining letters in the formula. Perhaps they will turn out to be familiar and will give a hint on the issue at hand.

Cheat sheet with formulas in physics for the Unified State Exam

and more (may be needed for grades 7, 8, 9, 10 and 11).

First, a picture that can be printed in a compact form.

Mechanics

  1. Pressure P=F/S
  2. Density ρ=m/V
  3. Pressure at liquid depth P=ρ∙g∙h
  4. Gravity Ft=mg
  5. 5. Archimedean force Fa=ρ f ∙g∙Vt
  6. Equation of motion for uniformly accelerated motion

X=X 0 + υ 0 ∙t+(a∙t 2)/2 S=( υ 2 -υ 0 2) /2a S=( υ +υ 0) ∙t /2

  1. Velocity equation for uniformly accelerated motion υ =υ 0 +a∙t
  2. Acceleration a=( υ -υ 0)/t
  3. Circular speed υ =2πR/T
  4. Centripetal acceleration a= υ 2/R
  5. Relationship between period and frequency ν=1/T=ω/2π
  6. Newton's II law F=ma
  7. Hooke's law Fy=-kx
  8. Law Universal gravity F=G∙M∙m/R 2
  9. Weight of a body moving with acceleration a P=m(g+a)
  10. Weight of a body moving with acceleration а↓ Р=m(g-a)
  11. Friction force Ftr=µN
  12. Body momentum p=m υ
  13. Force impulse Ft=∆p
  14. Moment of force M=F∙ℓ
  15. Potential energy of a body raised above the ground Ep=mgh
  16. Potential energy of an elastically deformed body Ep=kx 2 /2
  17. Kinetic energy of the body Ek=m υ 2 /2
  18. Work A=F∙S∙cosα
  19. Power N=A/t=F∙ υ
  20. Efficiency η=Ap/Az
  21. Oscillation period of a mathematical pendulum T=2π√ℓ/g
  22. Oscillation period of a spring pendulum T=2 π √m/k
  23. Equation of harmonic vibrations Х=Хmax∙cos ωt
  24. Relationship between wavelength, its speed and period λ= υ T

Molecular physics and thermodynamics

  1. Amount of substance ν=N/Na
  2. Molar mass M=m/ν
  3. Wed. kin. energy of monatomic gas molecules Ek=3/2∙kT
  4. Basic MKT equation P=nkT=1/3nm 0 υ 2
  5. Gay-Lussac's law (isobaric process) V/T =const
  6. Charles's law (isochoric process) P/T =const
  7. Relative humidity φ=P/P 0 ∙100%
  8. Int. energy ideal. monatomic gas U=3/2∙M/µ∙RT
  9. Gas work A=P∙ΔV
  10. Boyle–Mariotte law (isothermal process) PV=const
  11. Amount of heat during heating Q=Cm(T 2 -T 1)
  12. Amount of heat during melting Q=λm
  13. Amount of heat during vaporization Q=Lm
  14. Amount of heat during fuel combustion Q=qm
  15. Equation of state of an ideal gas PV=m/M∙RT
  16. First law of thermodynamics ΔU=A+Q
  17. Efficiency of heat engines η= (Q 1 - Q 2)/ Q 1
  18. Efficiency is ideal. engines (Carnot cycle) η= (T 1 - T 2)/ T 1

Electrostatics and electrodynamics - formulas in physics

  1. Coulomb's law F=k∙q 1 ∙q 2 /R 2
  2. Tension electric field E=F/q
  3. Electrical tension point charge field E=k∙q/R 2
  4. Surface charge density σ = q/S
  5. Electrical tension fields of an infinite plane E=2πkσ
  6. Dielectric constant ε=E 0 /E
  7. Potential energy of interaction. charges W= k∙q 1 q 2 /R
  8. Potential φ=W/q
  9. Point charge potential φ=k∙q/R
  10. Voltage U=A/q
  11. For a uniform electric field U=E∙d
  12. Electric capacity C=q/U
  13. Electric capacity of a flat capacitor C=S∙ ε ε 0 /d
  14. Energy of a charged capacitor W=qU/2=q²/2С=CU²/2
  15. Current strength I=q/t
  16. Conductor resistance R=ρ∙ℓ/S
  17. Ohm's law for the circuit section I=U/R
  18. Laws of the last. connections I 1 =I 2 =I, U 1 +U 2 =U, R 1 +R 2 =R
  19. Laws parallel. conn. U 1 =U 2 =U, I 1 +I 2 =I, 1/R 1 +1/R 2 =1/R
  20. Electric current power P=I∙U
  21. Joule-Lenz law Q=I 2 Rt
  22. Ohm's law for a complete circuit I=ε/(R+r)
  23. Short circuit current (R=0) I=ε/r
  24. Magnetic induction vector B=Fmax/ℓ∙I
  25. Ampere power Fa=IBℓsin α
  26. Lorentz force Fl=Bqυsin α
  27. Magnetic flux Ф=BSсos α Ф=LI
  28. Law electromagnetic induction Ei=ΔФ/Δt
  29. Induction emf in a moving conductor Ei=Вℓ υ sinα
  30. Self-induction EMF Esi=-L∙ΔI/Δt
  31. Energy magnetic field coils Wm=LI 2 /2
  32. Oscillation period no. circuit T=2π ∙√LC
  33. Inductive reactance X L =ωL=2πLν
  34. Capacitance Xc=1/ωC
  35. Effective current value Id=Imax/√2,
  36. Effective voltage value Uд=Umax/√2
  37. Impedance Z=√(Xc-X L) 2 +R 2

Optics

  1. Law of light refraction n 21 =n 2 /n 1 = υ 1 / υ 2
  2. Refractive index n 21 =sin α/sin γ
  3. Thin lens formula 1/F=1/d + 1/f
  4. Lens optical power D=1/F
  5. max interference: Δd=kλ,
  6. min interference: Δd=(2k+1)λ/2
  7. Differential grid d∙sin φ=k λ

The quantum physics

  1. Einstein's Physics for the photoelectric effect hν=Aout+Ek, Ek=U z e
  2. Red border of the photoelectric effect ν k = Aout/h
  3. Photon momentum P=mc=h/ λ=E/s

Physics of the atomic nucleus

  1. Law of radioactive decay N=N 0 ∙2 - t / T
  2. Binding energy of atomic nuclei

It's no secret that there are special notations for quantities in any science. Letter designations in physics prove that this science is no exception in terms of identifying quantities using special symbols. There are quite a lot of basic quantities, as well as their derivatives, each of which has its own symbol. So, letter designations in physics are discussed in detail in this article.

Physics and basic physical quantities

Thanks to Aristotle, the word physics began to be used, since it was he who first used this term, which at that time was considered synonymous with the term philosophy. This is due to the commonality of the object of study - the laws of the Universe, more specifically - how it functions. As is known, in the 16th-17th centuries the first scientific revolution, it was thanks to her that physics was singled out as an independent science.

Mikhail Vasilyevich Lomonosov introduced the word physics into the Russian language by publishing a textbook translated from German - the first physics textbook in Russia.

So, physics is a branch of natural science devoted to the study of the general laws of nature, as well as matter, its movement and structure. There are not as many basic physical quantities as it might seem at first glance - there are only 7 of them:

  • length,
  • weight,
  • time,
  • current strength,
  • temperature,
  • amount of substance
  • the power of light.

Of course, they have their own letter designations in physics. For example, the symbol chosen for mass is m, and for temperature - T. Also, all quantities have their own unit of measurement: the luminous intensity is candela (cd), and the unit of measurement for the amount of substance is mole.

Derived physical quantities

There are much more derivative physical quantities than basic ones. There are 26 of them, and often some of them are attributed to the main ones.

So, area is a derivative of length, volume is also a derivative of length, speed is a derivative of time, length, and acceleration, in turn, characterizes the rate of change in speed. Momentum is expressed through mass and speed, force is the product of mass and acceleration, mechanical work depends on force and length, energy is proportional to mass. Power, pressure, density, surface density, linear density, amount of heat, voltage, electrical resistance, magnetic flux, moment of inertia, moment of impulse, moment of force - they all depend on mass. Frequency, angular velocity, angular acceleration are inversely proportional to time, and electric charge has a direct relationship with time. Angle and solid angle are derived quantities from length.

What letter represents voltage in physics? Voltage, which is a scalar quantity, is denoted by the letter U. For speed, the designation is the letter v, for mechanical work - A, and for energy - E. Electric charge is usually denoted by the letter q, and magnetic flux - F.

SI: general information

The International System of Units (SI) is a system of physical units that is based on the International System of Units, including the names and designations of physical quantities. It was adopted by the General Conference on Weights and Measures. It is this system that regulates letter designations in physics, as well as their dimensions and units of measurement. Letters of the Latin alphabet are used for designation, and in some cases - of the Greek alphabet. It is also possible to use special characters as a designation.

Conclusion

So, at any scientific discipline There are special designations for various kinds of quantities. Naturally, physics is no exception. There are quite a lot of letter symbols: force, area, mass, acceleration, voltage, etc. They have their own symbols. There is a special system called the International System of Units. It is believed that basic units cannot be mathematically derived from others. Derivative quantities are obtained by multiplying and dividing from basic ones.

Share