Площадь параллелограмма если известны две стороны. Как найти площадь параллелограмма? Найти площадь параллелограмма, если известны сторона и высота

Параллелограмм – это четырехугольник, у которого стороны попарно параллельны.

В этой фигуре противоположные стороны и углы равны между собой. Диагонали параллелограмма пересекаются в одной точке и делятся ей пополам. Формулы площади параллелограмма позволяют найти значение через стороны, высоту и диагонали. Параллелограмм также может быть представлен в частных случаях. Ими считаются прямоугольник, квадрат и ромб.
Для начала рассмотрим пример расчета площади параллелограмма по высоте и стороне, к которой она опущена.

Этот случай считается классическим и не требует дополнительного разбирательства. Лучше рассмотрим формулу вычисления площади через две стороны и угол между ними. Этот же способ применяется в расчете . Если даны стороны и угол между ними, то площадь рассчитывается так:

Допустим, дан параллелограмм со сторонами a = 4 см, b = 6 см. Угол между ними α = 30°. Найдем площадь:

Площадь параллелограмма через диагонали


Формула площади параллелограмма через диагонали позволяет быстро найти значение.
Для вычислений понадобится величина угла, расположенного между диагоналями.

Рассмотрим пример расчета площади параллелограмма через диагонали. Пусть дан параллелограмм с диагоналями D = 7 см, d = 5 см. Угол, лежащий между ними α =30°. Подставим данные в формулу:

Пример расчета площади параллелограмма через диагональ дал нам прекрасный результат – 8,75.

Зная формулу площади параллелограмма через диагональ можно решать множество интересных задач. Давайте рассмотрим одну из них.

Задача: Дан параллелограмм с площадью 92 кв. см. Точка F расположена на середине его стороны ВС . Давайте найдем площадь трапеции ADFB , которая будет лежать в нашем параллелограмме. Для начала нарисуем все, что получили по условиям.
Приступаем к решению:

По нашим условиям ah =92, а соответственно, площадь нашей трапеции будет равняться

Прежде чем узнать, как найти площадь параллелограмма, нам необходимо вспомнить, что такое параллелограмм и что называется его высотой. Параллелограмм – четырехугольник, противолежащие стороны которого попарно параллельны (лежат на параллельных прямых). Перпендикуляр, проведенный из произвольной точки противоположной стороны к прямой, содержащей эту сторону называется высотой параллелограмма.

Квадрат, прямоугольник и ромб – это частные случаи параллелограмма.

Площадь параллелограмма обозначается как (S).

Формулы нахождения площади параллелограмма

S=a*h , где а – это основание, h – это высота, которая проведена к основанию.

S=a*b*sinα , где a и b – это основания, а α - угол между основаниями а и b.

S =p*r , где р – это полупериметр, r – это радиус окружности, которая вписана в параллелограмм.

Площадь параллелограмма, который образован векторами a и b равна модулю произведения заданных векторов, а именно:

Рассмотрим пример №1: Дан параллелограмм, сторона которого равна 7 см, а высота 3 см. Как найти площадь параллелограмма, формула для решения нам необходима.

Таким образом, S= 7x3. S=21. Ответ: 21 см 2 .

Рассмотрим пример №2: Даны основания 6 и 7 см, а также дан угол между основаниями 60 градусов. Как найти площадь параллелограмма? Формула, используемая для решения:

Таким образом, сначала найдем синус угла. Синус 60 = 0,5, соответственно S = 6*7*0,5=21 Ответ: 21 см 2 .

Надеюсь, что эти примеры Вам помогут при решении задач. И помните, главное – это знание формул и внимательность

Параллелограмм – геометрическая фигура, часто встречающаяся в задачах курса геометрии (раздел планиметрия). Ключевыми признаками данного четырехугольника являются равенство противолежащих углов и наличие двух пар параллельных противоположных сторон. Частные случаи параллелограмма – ромб, прямоугольник, квадрат.

Расчет площади данного вида многоугольника может быть произведен несколькими способами. Рассмотрим каждый из них.

Найти площадь параллелограмма, если известны сторона и высота

Для вычисления площади параллелограмма можно воспользоваться значениями его стороны, а также длины высоты, опущенной на нее. При этом полученные данные будут достоверны как для случая известной стороны – основания фигуры, так и если в вашем распоряжении боковая сторона фигуры. В таком случае искомая величина будет получена по формуле:

S = a * h (a) = b * h(b),

  • S – площадь, которую следовало определить,
  • a, b – известная (или полученная путем вычислений) сторона,
  • h – высота, опущенная на нее.

Пример: значение основания параллелограмма – 7 см, длина перпендикуляра, опущенного на него из противолежащей вершины, – 3 см.

Решение:S = a * h (a) = 7 * 3 = 21.

Найти площадь параллелограмма, если известны 2 стороны и угол между ними

Рассмотрим случай, когда вы знаете величины двух сторон фигуры, а также градусной меры угла, который они между собой образуют. Предоставленными данными также можно воспользоваться для нахождения площади параллелограмма. В этом случае выражение-формула будет иметь следующий вид:

S = a * c * sinα = a * c * sinβ,

  • a – боковая сторона,
  • с – известное (или полученное путем вычислений) основание,
  • α, β – углы между сторонами a и c.

Пример: основание параллелограмма – 10 см, его боковая сторона на 4 см меньше. Тупой угол фигуры составляет 135°.

Решение: определяем значение второй стороны: 10 – 4 = 6 см.

S = a * c * sinα = 10 * 6 * sin135° = 60 * sin(90° + 45°) = 60 * cos45° = 60 * √2 /2 = 30√2.

Найти площадь параллелограмма, если известны диагонали и угол между ними

Наличие известных значений диагоналей данного многоугольника, а также угла, который они образуют в результате своего пересечения, позволяет определить величину площади фигуры.

S = (d1*d2)/2*sinγ,
S = (d1*d2)/2*sinφ,

S – площадь, которую следует определить,
d1, d2 – известные (или полученные путем вычислений) диагонали,
γ, φ – углы между диагоналями d1 и d2.

Вывод формулы площади параллелограмма сводится к построению прямоугольника, равного данному параллелограмму по площади. Примем одну сторону параллелограмма за основание, а перпендикуляр, проведенный из любой точки противолежащей стороны на прямую, содержащую основание будем называть высотой параллелограмма. Тогда площадь параллелограмма будет равна произведению его основания на высоту.

Теорема. Площадь параллелограмма равна произведению его основания на высоту.

Доказательство . Рассмотрим параллелограмм с площадью. Примем сторонуза основание и проведем высотыи(рисунок 2.3.1). Требуется доказать, что.

Рисунок 2.3.1

Докажем сначала, что площадь прямоугольника также равна. Трапециясоставлена из параллелограммаи треугольника. С другой стороны, она составлена из прямоугольника НВСК и треугольника. Но прямоугольные треугольникии равны по гипотенузе и острому углу (их гипотенузыиравны как противоположные стороны параллелограмма, а углы 1 и 2 равны как соответственные углы при пересечении параллельных прямыхисекущей), поэтому их площади равны. Следовательно, площади параллелограммаи прямоугольникатакже равны, то есть площадь прямоугольникаравна. По теореме о площади прямоугольника, но так как, то.

Теорема доказана.

Пример 2.3.1.

В ромб со стороной и острым углом вписана окружность. Определить площадь четырёхугольника, вершинами которого являются точки касания окружности со сторонами ромба.

Решение:

Радиус вписанной в ромб окружности (рисунок 2.3.2), поскольку Четырёхугольникявляется прямоугольником, так как его углы опираются на диаметр окружности. Его площадь, где(катет, лежащий против угла),.

Рисунок 2.3.2

Итак,

Ответ:

Пример 2.3.2.

Дан ромб , диагонали которого равны 3 см и 4 см. Из вершины тупого угла проведены высотыиВычислить площадь четырёхугольника

Решение:

Площадь ромба (рисунок 2.3.3).

Итак,

Ответ:

Пример 2.3.3.

Площадь четырёхугольника равна Найти площадь параллелограмма, стороны которого равны и параллельны диагоналям четырёхугольника.

Решение:

Так как и(рисунок 2.3.4), то– параллелограмм и, значит,.

Рисунок 2.3.4

Аналогично получаем откуда следует, что.

Ответ: .

2.4 Площадь треугольника

Существует несколько формул для вычисления площади треугольника. Рассмотрим те, что изучаются в школе.

Первая формула вытекает из формулы площади параллелограмма и предлагается учащимся в виде теоремы.

Теорема. Площадь треугольника равна половине произведения его основания на высоту .

Доказательство. Пусть – площадь треугольника. Примем сторонуза основание треугольника и проведем высоту. Докажем что:

Рисунок 2.4.1

Достроим треугольник до параллелограмматак, как показано на рисунке. Треугольникииравны по трем сторонам (– их общая сторона,икак противоположные стороны параллелограма), поэтому их площади равны. Следовательно, площадь S треугольника АВС равна половине площади параллелограмма, т.е.

Теорема доказана.

Важно обратить внимание учащихся на два следствия, вытекающих из данной теоремы. А именно:

    площадь прямоугольного треугольника равна половине произведения его катетов.

    если высоты двух треугольников равны, то их площади относятся как основания.

Эти два следствия играют важную роль в решении разного рода задач. С опорой на данную доказывается еще одна теорема, имеющая широкое применение при решении задач.

Теорема. Если угол одного треугольника равен углу другого треугольника, то их площади относятся как произведения сторон, заключающих равные углы.

Доказательство . Пусть и– площади треугольникови, у которых углыиравны.

Рисунок 2.4.2

Докажем, что: .

Наложим треугольник . на треугольниктак, чтобы вершинасовместилась с вершиной, а стороныиналожились соответственно на лучии.

Рисунок 2.4.3

Треугольники иимеют общую высоту, поэтому,. Треугольникиитакже имеют общую высоту –, поэтому,. Перемножая полученные равенства, получим.

Теорема доказана.

Вторая формула. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. Существует несколько способов доказательства этой формулы, и я воспользуюсь одним из них.

Доказательство. Из геометрии известна теорема о том, что площадь треугольника равна половине произведения основания на высоту, опущенную на это основание:

В случае остроугольного треугольника . В случае тупого угла. Ho, а поэтому. Итак, в обоих случаях. Подставив вместов геометрической формуле площади треугольника, получим тригонометрическую формулу площади треугольника:

Теорема доказана.

Третья формула для площади треугольника – формула Герона , названа так в честь древнегреческого ученого Герона Александрийского, жившего в первом веке нашей эры. Эта формула позволяет находить площадь треугольника, зная его стороны. Она удобна тем, что позволяет не делать никаких дополнительных построений и не измерять углов. Ее вывод основывается на второй из рассмотренных нами формул площади треугольника и теореме косинусов: и .

Прежде чем перейти к реализации этого плана, заметим, что

Точно так же имеем:

Теперь выразим косинус через и:

Так как любой угол в треугольнике больше и меньше, то. Значит,.

Теперь отдельно преобразуем каждый из сомножителей в подкоренном выражении. Имеем:

Подставляя это выражение в формулу для площади, получаем:

Тема «Площадь треугольника» имеет большое значение в школьном курсе математики. Треугольник – простейшая из геометрических фигур. Он является «структурным элементом» школьной геометрии. Подавляющее большинство геометрических задач сводятся к решению треугольников. Не исключение и задача о нахождении площади правильного и произвольного n-угольника.

Пример 2.4.1.

Чему равна площадь равнобедренного треугольника, если его основание , а боковая сторона?

Решение :

–равнобедренный,

Рисунок 2.4.4

Проведём по свойству равнобедренного треугольника – медиана и высота. Тогда

В по теореме Пифагора:

Находим площадь треугольника:

Ответ:

Пример 2.4.2.

В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.

Решение:

Пусть (рисунок 2.4.5). Тогдаи(посколькуBD – биссектриса). Отсюда имеем , то есть. Значит,

Рисунок 2.4.5

Ответ:

Пример 2.4.3.

Найти площадь равнобедренного треугольника, если его основание равно , а длина высоты, проведённой к основанию, равна длине отрезка, соединяющего середины основания и боковой стороны.

Решение:

По условию, – средняя линия (рисунок 2.4.6). Так какВимеем:

или , откудаСледовательно,

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Поделиться