Окисление алкенов перманганатом калия в кислой. Реакции окисления органических веществ. Что будет с перманаганатом

Алкины с неконцевой тройной связью служат потенциальным источником для синтеза 1,2-дикетонов при действии подходящего окислителя. Однако до сих пор не найдено универсального реагента, вызывающего окисление тройной углерод–углеродной связи до 1,2-дикарбонильной группы. Предлагавшийся для этой цели RuO 4 – оксид рутения (VIII) – слишком дорог и часто вызывает дальнейшую окислительную деструкцию 1,2-дикетонов до карбоновых кислот. При взаимодействии дизамещенных ацетиленов с такими сильными окислителями, как перманганат калия, только в совершенно нейтральной среде при рН 7–8 при 0 С окисление удается остановить на стадии образования -дикетона. Так, например, стеароловая кислота при рН 7,5 окисляется до -дикетона. В большинстве случаев окисление сопровождается расщеплением тройной связи с образованием карбоновых кислот:

Выход продуктов окислительной деструкции алкинов невелик, и эта реакция не играет заметной роли в органическом синтезе. Она используется исключительно для доказательства строения природной ацетиленовой кислоты, содержащейся в листьях тропических растений в Центральной Америке. При ее окислительной деструкции были выделены две кислоты – лауриновая и адипиновая. Это означает, что исходная кислота представляет собой 6-октадециновую кислоту с нормальным углеродным скелетом из семнадцати атомов углерода:

Гораздо более важное значение имеет окислительное сочетание алкинов-1, катализируемое солями меди (реакция Глазера–Эглинтона). В 1870 г. Глазер обнаружил, что суспензия ацетиленида меди (I), в спирте окисляется кислородом воздуха с образованием 1,3-диинов:

Для окисления ацетиленидов меди (I) в качестве окислителя более эффективен гексацианоферрат (III) калия K 3 в ДМЭ или ДМФА. В 1959 г. Эглинтон предложил значительно более удобную модификацию окислительной конденсации алкинов. Алкин окисляют ацетатом меди (II) в растворе пиридина при 60–70 С. Модификация Эглинтона оказалась чрезвычайно полезной для синтеза макроцикличеких полиинов из ,-диинов. В качестве иллюстрации приведем синтез двух циклополиинов при окислительной конденсации гексадиина-1,5 (Ф. Зондхеймер, 1960):

Один из полиинов представляет собой продукт циклотримеризации, другой – циклотетрамеризации исходного гесадиина-1,5. Тример служит исходным реагентом для синтеза ароматического -аннулена (подробнее об аннуленах см. в гл. 12). Аналогично в тех же условиях нонадиина-1,8 получается его димер – 1,3,10,12-циклооктадекатетраен наряду с тримером, тетрамером и пентамером:

Для получения несимметричных диинов используют конденсацию галогенацетиленов с алкином-1 (терминальным алкином) в присутствии солей меди (I) и первичного амина (сочетание по Кадио–Ходкевичу, 1957 г.):

Исходные бромалкины получаются при действии на алкины-1 гипобромита натрия или из ацетиленидов лития и брома:

Медьорганическое производное теминального алкина генерируют непосредственно в реакционной смеси из Cu 2 Cl 2 и алкина-1.

6.3.4. Реакции электрофильного присоединения к тройной связи

Реакции электрофильного присоединения к тройной связи относятся к числу наиболее типичных и важных реакций алкинов. В отличие от электрофильного присоединения к алкенам синтетическое применение этой большой группы реакций намного опережало развитие теоретических представлений о ее механизме. Однако за последние двадцать лет положение существенно изменилось и в настоящее время это одна из бурно развивающихся областей физической органической химии. ВЗМО алкина располагается ниже, чес ВЗМО алкена (гл. 2), и это обстоятельство предопределяет в подавляющем большинстве случаев более низкую скорость присоединения электрофильного агента к алкину по сравнению с алкеном. Другим фактором, определяющим различие в реакционной способности алкинов и алкенов в реакциях электрофильного присоединения, является относительная стабильность интермедиатов, возникающих при присоединении электрофильной частицы к тройной и двойной связям. При присоединении электрофильной частицы Н + или Е + к двойной связи образуется циклический или открытый карбокатион (гл. 5). Присоединение Н + или Е + к тройной связи приводит к образованию открытого или циклического винил-катиона. В линейном открытом винил-катионе центральный атом углерода находится в sp -гибридном состоянии, в то время как вакантная р -орбиталь ортогональна -связи. Поскольку sp -гибридный атом углерода винил-катиона обладает более высокой электроотрицательностью по сравнению с sp 2 -гибридным атомом алкил-катиона, винил-катион должен быть менее стабилен по сравнению с алкил-катионом:

Данные квантовомеханических расчетов, а также термодинамические данные для газовой фазы, полученные с помощью масс-спектрометрии высокого давления и спектроскопии циклотронного резонанса, находятся в полном соответствии с этими рассуждениями. В табл. 6.3 приведены термодинамические данные для образования ряда карбокатионов и углеводородов, относящиеся к газовой фазе при 25 С.

Карбокатион

ΔН f ˚ ккал/моль

Из данных, представленных в тал. 6.3, следует, что винил-катион на 47 ккал/моль менее стабилен, чем содержащий то же число атомов этил-катион. Тот же вывод можно сделать и из энтальпии ионизации в газовой фазе CH 3 CH 2 Cl и CH 2 =CHCl:

Нетрудно заметить, что сочетание обоих факторов - более высокой энергии винил-катиона и низко расположенной ВЗМО алкина - представляет более низкую реакционную способность алкинов по сравнению с алкенами в реакциях электрофильного присоединения. В табл. 6.4 собраны сравнительные данные по присоединению галогенов, сульфен- и селенилхлоридов, трифторуксусной кислоты и воды к различным алкенам и алкинам, не содержащим какой-либо активирующей или дезактивирующей функциональной группы.

Таблица 6.4

Сравнительная характеристика алкинов и алкенов

в реакциях электрофильного присоединения

Субстраты

К алкен /К алкин

Бромирование в уксусной кислоте

СН 2 CH 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Хлорирование в уксусной кислоте

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 4 Н 9 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 С=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

Присоединение 4-хлорфенилсульфенхлорида

п -ClС 6 H 4 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение фенилселенхлорида С 6 Н 5 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение трифторуксусной кислоты

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 СН=СН 2 /С 2 Н 5 ССН

Кислотно-катализируемая гидратация

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 2 Н 5 СН=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Из этих данных следует, что только присоединение кислотных агентов и воды к тройной и двойной связям происходит с близкими скоростями. Присоединение галогенов, сульфенхлоридов и ряда других реагентов к алкенам протекает в 10 2  10 5 раз быстрее, чем к алкинам. Это означает, что углеводороды, содержащие несопряженные тройную и двойную связи, избирательно присоединяют эти реагенты по двойной связи, например:

К данным по сравнительной гидратации алкинов и алкенов следует относиться с осторожностью, поскольку для гидратации алкинов требуется катализ ионами ртути (II), который неэффективен для присоединения воды к двойной связи. Поэтому данные по гидратации тройной и двойной связи, строго говоря, не сопоставимы.

Присоединение галогенов, галогеноводородов, сульфенхлоридов и других электрофильных агентов можно осуществлять ступенчато, что легко проиллюстрировать с помощью следующих примеров:

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем. Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности , что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

3C 2 H 4 + 2KMnO 4 + 4H 2 O → 3CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O

3) CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 10KOH → CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 8K 2 MnO 4

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH → CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:


Окисление алкинов

Алкины окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные кратной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C≡CH + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

3CH≡CH +8KMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +2Н 2 О

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

5CH≡CH +8KMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +12Н 2 О
CH≡CH + 2KMnO 4 +3H 2 SO 4 → 2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 → C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

C 6 H 5 CH 2 CH 3 + 4KMnO 4 → C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

5С 6 Н 5 СН 3 +6КMnO 4 +9 H 2 SO 4 → 5С 6 Н 5 СООН+6MnSO 4 +3K 2 SO 4 + 14H 2 O

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O


Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

5C 2 H 5 OH + 4KMnO 4 + 6H 2 SO 4 → 5CH 3 COOH + 4MnSO 4 + 2K 2 SO 4 + 11H 2 O

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

5СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +22Н 2 О

3СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +8Н 2 О

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH, Cu(OH) 2 . Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 → CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O

3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O

CH 3 CHO + 2KMnO 4 + 3KOH → CH 3 COOK + 2K 2 MnO 4 + 2H 2 O

5CH 3 CHO + 2KMnO 4 + 3H 2 SO 4 → 5CH 3 COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O

CH 3 CHO + Br 2 + 3NaOH → CH 3 COONa + 2NaBr + 2H 2 O

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

CH 3 CH=O + 2OH → CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

CH 3 –CH=O + 2Cu(OH) 2 → CH 3 COOH + Cu 2 O + 2H 2 O

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

5HCOH + 4KMnO 4 (изб ) + 6H 2 SO 4 → 4MnSO 4 + 2K 2 SO 4 + 5CO 2 + 11H 2 O

3СН 2 О + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CO 2 +2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

HCHO + 4OH → (NH 4) 2 CO 3 + 4Ag↓ + 2H 2 O + 6NH 3

HCOH + 4Cu(OH) 2 → CO 2 + 2Cu 2 O↓+ 5H 2 O

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl 2 =CO 2 + Hg + 2HCl

HCOOH+ Cl 2 = CO 2 +2HCl

HOOC-COOH+ Cl 2 =2CO 2 +2HCl

Муравьиная кислота , кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2 + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

HCOOH →(t) CO + H2O

Каталитическое окисление алканов:

Каталитическое окисление алкенов:

Окисление фенолов:

4.5. Окисление алкенов

Реакции окисления алкенов целесообразно подразделить на две большие группы: реакции, в которых сохраняется углеродный скелет и реакции окислительной деструкции углеродного скелета молекулы по двойной связи. К первой группе реакций относятся эпоксидирование, а также гидроксилирование, приводящее к образованию вицинальных диолов (гликолей). В случае циклических алкенов при гидроксилировании образуются вицинальные транс - или цис -диолы. Другая группа включает озонолиз и реакции исчерпывающего окисления алкенов, приводящие к образованию различного рода карбонильных соединений и карбоновых кислот.

4.5.а. Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Н.А. Прилежаева, 1909 г)

Ациклические и циклические алкены при взаимодействии с перкислотами (надкислотами) RCOOOH в неполярной, индифферентной среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Согласно современной номенклатуре ИЮПАК - трехчленный цикл с одним атомом кислорода носит название оксиран.

Эпоксидирование алкенов следует рассматривать как синхронный, согласованный процесс, в котором не участвуют ионные интермедиаты типа гидроксильного катиона ОН+ . Другими словами, эпоксидирование алкенов представляет собой процесс син -присоединения одного атома кислорода по двойной связи с полным сохранением конфигурации заместителей при двойной связи.

Для эпоксидирования был предложен механизм, характерный для согласованных процессов.

Т. к. атака двойной связи атомом кислорода надкислоты равновероятна с обеих сторон плоскости двойной связи, образующиеся оксираны представляют собой либо мезо -формы, либо смеси энантиомеров. В качестве эпоксидирующих агентов используются следующие перкислоты: пербензойная, м -хлорпербензойная, моноперфталевая, перуксусная, трифторперуксусная и пермуравьиная. Перкислоты ароматического ряда применяют в виде индивидуальных реагентов, тогда как перкислоты алифатического ряда - СН 3 СО 3 Н, CF 3 CO 3 H и НСО 3 Н не выделяют в индивидуальном виде, а используют после их образования при взаимодействии 30% или 90%-ного пероксида водорода и соответствующей карбоновой кислоты. Пербензойную и м -хлорпербензойную кислоты получают окислением соответственно бензойной и м -хлорбензойной кислот 70%-ной перекисью водорода в растворе метансульфокислоты или из хлорангидридов этих кислот и перекиси водорода.

Моноперфталевую кислоту получают подобным методом из фталевого ангидрида и 30%-ной перекиси водорода.

Первоначально для получения оксиранов (эпоксидов) использовались пербензойная или моноперфталевая кислоты:

В настоящее время для эпоксидирования чаще всего используют м -хлорпербензойную кислоту. В отличие от других перкислот она стабильна при хранении в течение длительного времени (до 1 года) и абсолютно безопасна при обращении. Выходы оксиранов, полученных при окислении ациклических и циклических алкенов м -хлорпербензойной кислотой в растворе хлористого метилена, хлороформа или диоксана, обычно довольно высоки.

Перкислоты часто генерируют прямо в реакционной смеси из 90% перекиси водорода и карбоновой кислоты в хлористом метилене.

Алкены с двойной связью, сопряженной с карбонильной группой или другим акцепторным заместителем, малоактивны и для их окисления лучше использовать более сильные окислители, такие как трифторперуксусная кислота, получаемая из ангидрида трифторуксусной кислоты и 90%-ной перекиси водорода в хлористом метилене. Простейший оксиран - окись этилена получают в промышленности окислением этилена кислородом в присутствии серебра, как катализатора.

2. анти -Гидроксилирование

Трехчленное кольцо оксиранов легко раскрывается под действием самых разнообразных нуклеофильных реагентов. Эти реакции подробно будут обсуждаться в разделе, посвященном ациклическим и циклическим простым эфирам. Здесь же будет рассматриваться только гидролиз оксиранов. Гидролиз оксиранов катализируется как кислотами, так и основаниями. В обоих случаях образуются вицинальные диолы, т. е. гликоли. При кислотном катализе в первой стадии происходит протонирование атома кислорода оксирана с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды:

Ключевой стадией в раскрытии кольца, определяющей скорость всего процесса, является нуклеофильная атака водой на протонированную форму оксирана. С точки зрения механизма этот процесс аналогичен раскрытию бромониевого иона при нуклеофильной атаке бромид-иона или другого нуклеофильного агента. С этих позиций стереохимическим результатом должно быть образование транс -гликолей при расщеплении циклических эпоксидов. Действительно, при кислотно-катализируемом гидролизе циклогексеноксида или циклопентеноксида образуются исключительно транс -1,2-диолы.

Таким образом, двухстадийный процесс эпоксидирования алкена с последующим кислотным гидролизом эпоксида суммарно соответствует реакции анти -гидроксилирования алкенов.

Обе стадии анти -гидроксилирования алкенов можно совместить, если алкен обрабатывать водной 30-70%-ной перекисью водорода в муравьиной или трифторуксусной кислоте. Обе эти кислоты являются достаточно сильными для того, чтобы вызвать раскрытие оксиранового цикла.

Раскрытие оксиранового кольца, катализируемое основанием, также приводит к образованию циклических транс -гликолей.

Следовательно, двухстадийный процесс эпоксидирования алкенов с последующим щелочным гидролизом эпоксидов также является реакцией анти -гидроксилирования алкенов.

3. син -Гидроксилирование

Некоторые соли и оксиды переходных металлов в высших степенях окисления являются эффективными реагентами син -гидроксилирования двойной связи алкена, когда обе гидроксильные группы присоединяются с одной и той же стороны двойной связи. Окисление алкенов перманганатом калия - один из старейших методов син -гидроксилирования двойной связи - продолжает широко использоваться, несмотря на свойственные ему ограничения. Цис -1,2-циклогександиол был впервые получен В.В. Марковниковым в 1878 году гидроксилированием циклогексена водным раствором перманганата калия при 0 0 С.

Этот метод в дальнейшем получил развитие в работах русского ученого Е.Е. Вагнера, поэтому син -гидроксилирование алкенов под действием водного раствора перманганата калия носит название реакции Вагнера. Перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол. Для того, чтобы по возможности избежать дальнейшего расщепления гликолей, необходимо тщательно контролировать условия реакции. Выходы гликолей при этом обычно невелики (30-60%). Наилучшие результаты достигаются при гидроксилировании алкенов в слабощелочной среде (рН~8 9) при 0-5 0 С разбавленным 1%-ным водным раствором KMnO 4 .

Первоначально при окислении алкенов перманганатом калия образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до вицинального диола.

Циклический эфир марганцевой кислоты как интермедиат не был выделен, однако его образование следует из экспериментов с меченым 18 О перманганатом калия: оба атома кислорода в гликоле оказываются мечеными при окислении алкена KMn 18 O 4 . Это означает, что оба атома кислорода переходят от окислителя, а не из растворителя - воды, что находится в хорошем соответствии с предлагаемым механизмом.

Другой метод син -гидроксилирования алкенов под действием оксида осмия (VIII) OsO 4 был предложен Р. Криге в 1936 году. Тетраоксид осмия представляет собой бесцветное, летучее, кристаллическое вещество, хорошо растворимое в эфире, диоксане, пиридине и др. органических растворителях. При взаимодействии тетраоксида осмия с алкенами в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты - осмат, который легко может быть изолирован в индивидуальном виде. Присоединение OsO 4 к двойной связи заметно ускоряется в растворе в пиридине. Разложение осматов до вицинальных гликолей достигается действием водного раствора гидросульфита натрия или сероводородом.

Выходы продуктов син -гидроксилирования алкенов в этом методе значительно выше, чем при использовании перманганата в качестве окислителя. Важным достоинством метода Криге является отсутствие продуктов окислительного расщепления алкенов, характерного для перманганатного окисления.

Тетраоксид осмия очень дорогой и труднодоступный реагент, к тому же он токсичен. Поэтому оксид осмия (VIII) используется при синтезе малых количеств трудно доступных веществ с целью получения наиболее высокого выхода диола. С целью упрощения син -гидроксилирования алкенов под действием OsO 4 была разработана методика, позволяющая использовать лишь каталитические количества этого реагента. Гидроксилирование алкенов осуществляется с помощью перекиси водорода в присутствии OsO 4 , например:

В заключение этого раздела приведем стереохимические отношения между алкеном цис - или транс -конфигурации и конфигурацией образующегося вицинального диола, который может быть цис - или транс -изомером, эритро - или трео -формой, мезо - или D,L -формой в зависимости от заместителей в алкене:

Аналогичные стереохимические отношения наблюдаются и в других реакциях син - или анти -присоединения по кратной связи водорода, галогенводородов, воды, галогенов, гидридов бора и др. реагентов.

4.5.б. Окислительное расщепление алкенов

При окислении алкенов щелочным водным раствором перманганата калия при нагревании или раствором KMnO 4 в водной серной кислоте, а также при окислении алкенов раствором оксида хрома (VI) CrO 3 в уксусной кислоте или дихроматом калия и серной кислотой первоначально образующийся гликоль подвергается окислительной деструкции. Конечным результатом является расщепление углеродного скелета по месту двойной связи и образование в качестве конечных продуктов кетонов и (или) карбоновых кислот в зависимости от заместителей при двойной связи. Если оба атома углерода при двойной связи содержат только по одной алкильной группе, конечным продуктом исчерпывающего окисления будет смесь карбоновых кислот, тетразамещенный при двойной связи алкен окисляется до двух кетонов. Однозамещанные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа.

Из-за невысоких выходов карбоновых кислот и кетонов, реакции исчерпывающего окисления алкенов в классическом варианте не нашли широкого применения и ранее использовались, в основном, для установления строения исходного алкена по продуктам деструктивного окисления. В настоящее время окисление алкенов (R-CH=CH-R и R-CH=CH 2) до карбоновых кислот (RCOOH) с помощью перманганата или дихромата калия проводят в условиях межфазного катализа. Выходы карбоновых кислот при этом превышают 90%.

4.5.в. Озонолиз алкенов

Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи. В течение многих десятилетий эта реакция служила основным методом определения строения исходного углеводорода, а также находила применение в синтезе разнообразных карбонильных соединений. Реакция алкена с озоном проводится пропусканием тока ~5%-ной смеси озона и кислорода в раствор алкена в хлористом метилене или этилацетате при -80 0 -100 0 С. Окончание реакции контролируется пробой на свободный озон с иодидом калия. Механизм этой своеобразной и сложной реакции установлен главным образом благодаря работам Р Криге. Первым продуктом 1,3-диполярного циклоприсоединения к двойной связи является так называемый мольозонид (1,2,3-триоксолан). Этот аддукт нестабилен и далее самопроизвольно разлагается с раскрытием цикла и образованием в качестве конечного продукта нормального озонида (1,2,4-триоксолана).

В настоящее время общепризнано, что превращение мольозонида в обычный озонид происходит по механизму расщепления - рекомбинации. Мольозонид претерпевает самопроизвольное раскрытие нестабильного 1,2,3-триоксоланового цикла с образованием карбонильного соединения и биполярного иона, которые далее реагируют между собой также по схеме 1,3-диполярного циклоприсоединения.

Приведенная схема перегруппировки мольозонида в нормальный озонид подтверждается тем, что если до полного образования озонида в реакционной смеси присутствует в качестве "перехватчика" биполярного иона другое карбонильное соединение, то образуется так называемый "смешанный озонид". Так, например, при озонилизе цис -стильбена в присутствии бензальдегида, меченного изотопом 18 О, метка входит в состав эфирного, а не перекисного мостика озонида:

Этот результат хорошо согласуется с образованием смешанного озонида при рекомбинации биполярного иона с меченным бензальдегидом:

Озониды представляют собой очень нестабильные соединения, разлагающиеся со взрывом. Их не выделяют в индивидуальном виде, а расщепляют при действии самых разнообразных регентов. Следует различать восстановительное и окислительное расщепление. При гидролизе озониды медленно расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот. Это так называемое окислительное разложение озонидов:

Таким образом, при окислительном разложении озонидов образуются карбоновые кислоты и (или) кетоны в зависимости от строения исходного алкена. В качестве окислителей можно использовать кислород воздуха, перекись водорода, перкислоты или гидроокись серебра. Наиболее часто в синтетической практике для этой цели используют перекись водорода в уксусной или муравьиной кислоте, а также перекись водорода в щелочной среде.

На практике метод окислительного разложения озонидов используется, в основном, для получения карбоновых кислот.

Более важное значение имеет восстановительное расщепление озонидов. В качестве восстановителей наиболее часто используются цинк и уксусная кислота, трифенилфосфин или диметилсульфид. В этом случае конечными продуктами озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена.

Из приведенных выше примеров видно, что тетразамещенный при двойной связи алкен при озонолизе и последующем восстановительном разложении озонида образует два кетона, тогда как тризамещенный алкен дает кетон и альдегид. Дизамещенный симметричный алкен при озонолизе образует два альдегида, а алкены с концевой связью - альдегид и формальдегид.

Интересной модификацией озонолиза является метод, где в качестве восстановителя озонида используется боргидрид натрия, В этом случае конечными продуктами реакции оказываются первичные или вторичные спирты, образующиеся при восстановлении соответственно альдегидов и кстонов.

Озонолиз алкенов - это сложный, трудоемкий и взрывоопасный процесс, требующий применения специальной аппаратуры. По этой причине были разработаны другие методы окислительного расщепления алкенов до карбонильных соединений и карбоновых кислот, которые с успехом заменяют реакцию озонолиза в синтетической практике.

Один из современных препаративных методов окислительной деструкции алкенов был предложен в 1955 г Р. Лемье. В основе этого метода лежит гидроксилирование алкенов с помощью перманганата калия с последующим расщеплением вицинального гликоля периодатом натрия NaIO 4 при рН ~ 7 8. Периодат сам по себе не взаимодействует с алкеном. Продуктами этого двухстадийного окислительного расщепления являются кетоны или карбоновые кислоты, поскольку альдегиды в этих условиях также окисляются до карбоновых кислот. В методе Лемье не возникает трудоемкой проблемы отделения одного из продуктов реакции, - двуокиси марганца, так как и двуокись, и манганат вновь окисляются периодатом до перманганат-иона. Это позволяет использовать только каталитические количества перманганата калия. Ниже приведены некоторые типичные примеры окислительного расщепления алкенов по методу Лемье.

Цитронеллол - спирт, входящий в состав розового масла, масла герани и лимона, - окисляется смесью перманганата калия и периодата натрия в водном ацетоне при 5 10 0 С до 6-гидрокси-4-метилгексанкарбоновой кислоты с количественным выходом.

В другой разновидности этого метода вместо перманганата калия используют каталитические количества тетраоксида осмия (Лемье, Джонсон 1956 г). Особое достоинство комбинации OsO 4 и NaIO 4 заключается в том, что она позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи алкена с образованием осмата, который окисляется периодатом натрия до карбонильных соединений с регенерацией четырехокиси осмия.

Вместо тетраоксида осмия можно использовать и тетраоксид рутения RuO 4 . Окислительная деструкция алкенов по Лемье-Джонсону приводит к тем же продуктам, что и озонолиз с восстановительным расщеплением озонидов.

В терминах, характерных для современной органической химии, это означает, что комбинация OsO 4 -NaIO 4 представляет собой синтетический эквивалент реакции озонолиза алкенов с последующим восстановительным расщеплением. Аналогично, окисление алкенов смесью перманганата и периодата - это синтетический эквивалент озонолиза с окислительным разложением озонидов.

Таким образом, окисление алкенов - это не только совокупность препаративных методов получения спиртов, эпоксидов, диолов, альдегидов, кетонов и карбоновых кислот, это также один из возможных путей установления структуры исходного алкена. Так, по результату, окислительной деструкции алкена можно определить положение двойной связи в молекуле, тогда как стереохимический результат син- или анти- гидроксилирования алкена позволяет сделать вывод о его геометрии.

В заданиях категории С3 ЕГЭ особые трудности вызывают реакции окисления органических веществ перманганатом калия KMnO 4 в кислой среде, протекающие с разрывом углеродной цепочки. Например, реакция окисления пропена, протекающая согласно уравнению:

CH 3 CH = CH 2 + KMnO 4 + H 2 SO 4 CH 3 COOH + CO 2 + MnSO 4 + K 2 SO 4 + H 2 O.

Чтобы расставить коэффициенты в сложных уравнениях окислительно-восстановительных реакций, подобных этой, стандартная методика предлагает составить электронный баланс, но после очередной попытки становится очевидно, что этого недостаточно. Корень проблемы здесь кроется в том, что коэффициент перед окислителем, взятый из электронного баланса, необходимо заменить. Данная статья предлагает два способа, которые позволяют выбрать правильный коэффициент перед окислителем, чтобы, наконец, уравнять все элементы. Способ подстановки для замены коэффициента перед окислителем больше подходит тем, кто способен долго и кропотливо считать, поскольку расстановка коэффициентов этим способом может оказаться длительной (в данном примере понадобилось 4 попытки). Способ подстановки применяется совместно с методом "ТАБЛИЦА", который также подробно рассматривается в этой статье. Способ "алгебраический" позволяет не менее просто и надёжно, но гораздо быстрее заменить коэффициент перед окислителем KMnO 4 по сравнению со способом подстановки, однако имеет более узкую область применения. Способ "алгебраический" может быть использован только для замены коэффициента перед окислителем KMnO 4 в уравнениях реакций окисления органических веществ, протекающих с разрывом углеродной цепочки.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

По теме: методические разработки, презентации и конспекты

Расстановка коэффициентов в химических уравнениях

Преподаватель, являясь главным действующим лицом в организации познавательной деятельности учащихся, постоянно находится в поиске путей повышения эффективности обучения. Организация эффективного обуче...

Поделиться