Каковы особенности лучевых скоростей звезд относительно солнца. Пространственные скорости звезд. Из наблюдений было обнаружено, что координаты звезд медленно изменяются вследствие их собственного движения. Собственное. Пространственное движение звезд




Звезда в созвездии Змееносца Барнарда обладает самым быстрым собственным движением. За 100 лет она проходит 17,26", а за 188 лет смещается на величину поперечника лунного диска. Звезда находится на расстоянии 1,81 пк. Смещение звезд за 100 лет


Звезды движутся с разными скоростями и удалены от наблюдателя на различные расстояния. Вследствие этого взаимное расположение звезд меняется с течением времени. В течение одной человеческой жизни обнаружить изменения контура созвездия практически невозможно. Если проследить эти изменения в течение тысячелетий, то они становятся вполне заметными.




Пространственная скорость звезды – скорость, с которой звезда движется в пространстве относительно Солнца. Сущность эффекта Доплера: Линии в спектре источника, приближающегося к наблюдателю, смещены к фиолетовому концу спектра, а линии в спектре удаляющегося источника – к красному концу спектра (по отношению к положению линий в спектре неподвижного источника). Компоненты собственного движения звезд μ – собственное движение звезды π – годичный параллакс звезды λ – длина волны в спектре звезды λ 0 – длина волны неподвижного источника Δλ – сдвиг спектральной линии с – скорость света (3·10 5 км/с)

Звезды в древности считались неподвижными друг относительно друга. Однако в XVIII в. было обнаружено очень медленное перемещение Сириуса по небу. Оно заметно лишь при сравнении точных измерений его положения, сделанных с промежутком времени в десятилетия.

Собственным движением звезды называется ее видимое угловое смещение по небу за один год. Оно выражается долями секунды дуги в год.

Только звезда Барнарда проходит за год дугу в что за 200 лет составит 0,5°, или видимый поперечник Луны. За это звезду Барнарда назвали «летящей». Но если расстояние до звезды неизвестно, то ее собственное движение мало что говорит об ее истинной скорости.

Например, пути, пройденные звездами за год (рис. 98), могут быть разные: а соответствующие им собственные движения одинаковые.

2. Компоненты пространственной скорости звезд.

Скорость звезды в пространстве можно представить как векторную сумму двух компонент, один из которых направлен вдоль луча зрения, другой перпендикулярен ему. Первый компонент представляет собой лучевую, второй - тангенциальную скорость. Собственное движение звезды определяется лишь ее тангенциальной скоростью и не зависит от лучевой. Чтобы вычислить тангенциальную скорость в километрах в секунду, надо выраженное в радианах в год, умножить на расстояние до звезды выраженное в километрах,

Рис. 98. Собственное движение лучевая тангенциальная и полная пространственная скорость звезды .

Рис. 99. Изменение видимого расположения ярких звезд созвездия Большой Медведицы вследствие их собственных движений: сверху - 50 тыс. лет назад; в середине - в настоящее время; внизу - через 50 тыс. лет.

и разделить на число секунд в году. Но так как на практике всегда определяется в секундах дуги, в парсеках, то для вычисления в километрах в секунду получается формула:

Если определена по спектру и лучевая скорость звезды то пространственная скорость ее V будет равна:

Скорости звезд относительно Солнца (или Земли) обычно составляют десятки километров в секунду.

Собственные движения звезд определяют, сравнивая фотографии выбранного участка неба, сделанные на одном и том же телескопе через промежуток времени, измеряемый годами или даже десятилетиями. Из-за того, что звезда движется, ее положение на фоне более далеких звезд за это время немного изменяется. Смещение звезды на фотографиях измеряют с помощью специальных микроскопов. Такое смещение удается оценить лишь для сравнительно близких звезд.

В отличие от тангенциальной скорости лучевую скорость можно измерить, даже если звезда очень далека, но яркость ее достаточна для получения спектрограммы.

Звезды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звезд (рис. 99).

3. Движение Солнечной системы.

В начале XIX в. В. Гершель

установил по собственным движениям немногих близких звезд, что по отношению к ним Солнечная система движется в направлении созвездий Лиры и Геркулеса. Направление, в котором движется Солнечная система, называется апексом движения. Впоследствии, когда стали определять по спектрам лучевые скорости звезд, вывод Гершеля подтвердился. В направлении апекса звезды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении с такой же скоростью в среднем удаляются от нас.

Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20 км/с по отношению к соседним звездам Задавать вопрос о том, когда мы долетим до созвездия Лиры, бессмысленно, так как созвездие не является пространственно ограниченным образованием. Одни звезды, которые сейчас мы относим к созвездию Лиры, мы минуем раньше (на огромном от них расстоянии), другие будут всегда оставаться практически так же далеки от нас, как и сейчас.

(см. скан)

4. Если звезда (см. задачу 1) приближается к нам со скоростью 100 км/с, то как изменится ее яркость за 100 лет?

4. Вращение Галактики.

Все звезды Галактики обращаются вокруг ее центра. Угловая скорость обращения звезд во внутренней области Галактики (почти до Солнца) примерно одинакова, а внешние ее части вращаются медленнее. Этим обращение звезд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лат со скоростью 250 км/с.

Для учащихся 9–11 классов на 16.03.2013

Пространственное движение звезд

Задачи для самостоятельного решения

1..gif" width="45" height="21">; возможная неточность (вероятная ошибка) его измерения составляет . Что можно сказать о расстоянии до звезды?

3. Вычислить абсолютную звездную величину Сириуса, зная, что его параллакс равен видимая звездная величина равна .

4. Во сколько раз слабее Солнца звезда Проксима Центавра, для которой .

5. Звездная величина Веги равна 9 сентября" href="/text/category/9_sentyabrya/" rel="bookmark">9 сентября 1949 г. и 7 марта следующего года?

10. Вывести формулу, дающую поправку наблюденной лучевой скорости звезды за влияние годичного движения Земли для случая, когда звезда находится в полюсе эклиптики.

11. Вывести формулу, дающую поправку наблюденной лучевой скорости звезды за влияние годичного движения Земли для случая, когда звезда находится в плоскости эклиптики. Звезду считать находящейся в точке весеннего равноденствия, а орбиту Земли считать круговой.

12. Звезда с координатами ..gif" width="16" height="17">.gif" width="63" height="21"> по направлению, позиционный угол которого . Определить компонент собственного движения .

14..gif" width="61" height="21"> по направлению, позиционный угол которого . Определить компоненты собственного движения по обеим координатам и .

15..gif" width="45" height="21"> . Какова ее тангенциальная скорость?

16. Лучевая скорость Альдебарана равна +54 км/с , а тангенциальная скорость 18 км/с. Найти полную пространственную скорость его относительно Солнца.

17. Собственное движение Сириуса по прямому восхождению равно , а по склонению в год, лучевая скорость равна км/с, а параллакс Определить полную пространственную скорость Сириуса относительно Солнца и угол, образуемый ею с лучом зрения.

18. Полная пространственная скорость звезды Канопус 23 км/с образует угол в с лучом зрения. Определить лучевую и тангенциальную составляющие скорости.

19..gif" width="45" height="21 src=">.

1 вариант

1. Какой слой атмосферы Земли поглощает основную часть ультрафиолетового излучения? Ответ: озоновый

2. Как можно определить цветовую температуру звезды? Ответ: по закону Вина λ*T=b (b- постоянная Вина, b=2,9* м*К

3. Опишите метод, с помощью которого определили химический состав Солнца. Ответ: с помощью спектрального анализа.


4. Наблюдения показали, что в данный момент индекс солнечной активности, измеряемый в числах Вольфа, W=123, а число всех пятен на Солнце f=33. Определите количество групп g на диске Солнца, приняв множитель k в формуле W=k(10g+f) равным единице. Ответ: Чтобы найти количество групп, т.е. неизвестное из приведенной формулы, надо в формулу подставить значения известных величин. Будем иметь 123=1(10g + 33). Или 123 = 10g + 33. Или 10g = 90, Отсюда количество групп g=90/10 = 9 групп.

5. Определите изменение блеска цефеиды в звездных величинах, если ее температура меняется от 7200 К до 6000 К при неизменном радиусе.

2 вариант

1. Какой слой Солнца является основным источником видимого света? Ответ: фотосфера

2. Как можно определить модуль тангенциальной скорости сравнительно близких к наблюдателю звезд? Ответ: по смещению звезды на небесной сфере =4,74 .

3. Как изменяется положение спектральных линий в спектре звезды, если она приближается к наблюдателю? Ответ: свет от приближающегося источника становится более синим (частота увеличивается), а от удаляющегося – более красным (частота уменьшается).

4. Определите массу галактики (М), если на расстоянии r=20кпк от ее ядра звезды обращаются со скоростью v=350 км/с.

Ответ: М= = = =3673* либо

20 кпк=R~2*10^4*30^11*180*3600/3.14~12.4*10^20 м. Отсюда M~2.2*10^42 кг.

5. Галактика удаляется от нас со скоростью, равной 8% от скорости света. Какое значение принимает линия водорода (λ=410 нм) в спектре этой галактики? Ответ: h=h0*SQR[(1+v/c)/(1-v/c)]

3 вариант

1.
Как называется раздел астрономии, в котором изучаются небесные объекты с помощью аппаратуры, вынесенной за пределы земной атмосферы? Ответ: внеатмосферная астрономия

2. Какую температуру имеют желтые звезды типа Солнца? Ответ: 6000 К

3. Как осуществляется перенос энергии из недр Солнца к фотосфере? Ответ поясните рисунком. Ответ: Энергия передается посредством конвекции. Причина возникновения конвекции в наружных слоях Солнца та же, что и в сосуде с кипящей водой: количество энергии, поступающее от нагревателя, гораздо больше того, которое отводится теплопроводностью. Поэтому вещество приходит в движение и само начинает переносить тепло. Конвективная зона простирается практически до самой видимой поверхности Солнца (фотосферы).

4. Определите период пульсаций цефеиды, если средняя плотность ее вещества равна 5* кг/ . Средняя плотность вещества Солнца 1,4* кг/ . Ответ: Р- период пульсаций в сутках, - средняя плотность (в единицах средней плотности Солнца)

P= = ; = =3,57* ; P= = =3,36*

5. В спектре галактики линия водорода =656,3 нм смещена к красному концу спектра на величину Δλ=21,9 нм. Определите скорость удаления галактики и расстояние до нее. Ответ: = = =0,1*

4 вариант

1. На какой диапазон приходится максимум солнечного излучения? Ответ: инфракрасный диапазон

2. Как изменяется мощность излучения абсолютно черного тела по мере увеличения его температуры? Ответ: Мощность излучения абсолютно черного тела пропорциональна четвертой степени температуры (закон Стефана - Больцмана) T=

3.
Определите время, за которое частицы коронального выброса массы от Солнца достигнут Земли, если их скорость равна 1000 км/с. Ответ: расстояние от Солнца до Земли - 149 600 000 км, а скорость движения - 1000 км/с, значит: t=S/V=149 600 000/1000=149 600 секунд, или 2 493 минуты, 20 секунд, или 41 час, 33 минуты, 20 секунд.

4. У звезды Альтаир ( Орла) годичный параллакс равен 0,198’’, собственное движение 0,658’’ и лучевая скорость равна -26км/с. Определите модуль (тангенциальная в интернете в условии) пространственной скорости этой звезды.

5. Излучение источника характеризуется частотой 4,5* Гц. Определите температуру этого источника, если он по своим свойствам близок к абсолютно черному телу. Ответ: Используем закон Вина: = T= = =435 градусов

5 вариант

1. Как называется угол, под которым со звезды видна полуось земной орбиты, перпендикулярная направлению на звезду? Ответ: годичный параллакс ( )

2. Как будут смещаться спектральные линии в спектре звезды, если она удаляется от наблюдателя вдоль луча зрения? Ответ: согласно принципу Доплера при движении источника света (или самого наблюдателя) вдоль луча зрения спектральные линии смещаются пропорционально лучевой скорости в соответствии с формулой = . - лучевая скорость, c- скорость света, λ- длина волны спектральной линии и Δλ- смещение этой линии. При удалении источника света спектральные линии смещаются в красную сторону спектра , а при приближении - в фиолетовую.



3.
Определите расстояние до галактики, если в ней обнаружена новая звезда, видимая звездная величина которой равна ,а абсолютная звездная величина

4. Во сколько раз освещенность, получаемая от Сириуса (α Большого Пса), больше освещенности, получаемой от Полярной звезды (α Малой Медведицы), если их видимые звездные величины соответсвенно равны

5. Определите массу Большой газопылевой туманности в Орионе, если ее видимые угловые размеры составляют около , расстояние до нее 400 пк, а плотность газопылевой среды около .

6 вариант

1. В каком слое атмосферы Земли поглощается основная часть инфракрасного излучения Солнца? Ответ: в озоновом слое

2. Как изменяется период вращения Солнца вокруг оси?

3. Как можно определить линейный радиус звезды? Ответ: R=215 (в радиусах Солнца)

4. Определите линейные размеры галактики, если она удаляется от нас со скоростью 6000 км/с и имеет видимый угловой размер 2’. Ответ: Линейный диаметр галактики D=r*d"/206265", где r = V/H.

Н=70 км/ (с*Мпк)

r=6000/70=85,7 Мпк, где r -расстояние до галактики

D=85,7 *2′/206265" = 0,0008309 Мпк ≈831пк

5. Звезда имеет одинаковую с Солнцем температуру, но ее диаметр в 2 раза меньше. На каком расстоянии от этой звезды должна находится планета, чтобы получать от нее столько же энергии, сколько Земля получает от Солнца? Ответ: Излучение идёт с поверхности звезды, площадь которой пропорциональна квадрату радиуса.

Т. е. эта звезда излучает в 4 раза меньше Солнца.

Количество излучения, приходящегося на единицу площади планеты обратно пропорционально квадрату расстояния от звезды, нам нужно, чтобы она получила в 4 раза больше (чтобы скомпенсировать общее уменьшение излучения звезды)

Итого: планету нужно ставить вдвое ближе к звезде.

7 вариант

1. Как можно определить видимое увеличение оптического телескопа? Ответ: Найти отношение угла, под которым наблюдается изображение, к угловому размеру объекта при наблюдении его непосредственно глазом.(либо Сравнить размеры объекта наблюдаемого не вооруженным глазом и размеры этого же объекта, наблюдаемого в телескоп. Кратность размеров объекта будет является кратностью увеличения телескопа.)

2. Запишите зависимость положения максимума интенсивности излучения в спектре от температуры тела.

3. Определите эффективную температуру Солнца, если известна его светимость ( = 3,85* Ответ: T= = =

4. Определите светимость галактики, если она имеет видимую звездную величину и удаляется от нас со скоростью км/с. Постоянную Хаббла примите равной 75 км/(с*Мпк).

5.
Шаровое скопление содержит один миллион звезд главной последовательности, каждая из которых имеет абсолютную звездную величину . Определите видимую звездную величину скопления, находящегося от нас на расстоянии 10 кпк.

    Слайд 1

    Тема: Пространственная скорость звезд Самую узнаваемую группа звезд на небе Северного полушария – Большой Ковш (часть созвездия Большой Медведицы, имеет различные имена у разных народов). Пять звезд Большого Ковша расположены в одном месте в пространстве и возможно, что образовались примерно в одно время. Воронецкий Никита

    Слайд 2

    Собственное движение звезды

    Собственное движение измеряется в секундах дуги в годμ[″/год ]. В 720г И. Синь (683-727, Китай) в ходе углового изменения расстояния между 28 звездами, впервые высказывает догадку о перемещении звезд. В 1718гЭ. Галлей (1656-1742, Англия) открывает собственное движение звезд, исследуя и сравнивая каталоги Гиппарха (125г до НЭ) и Дж. Флемстида (1720г). Первой звездой, у которой он в 1717г обнаружил собственное движение была Арктур (α Волопаса), находящуюся в 36 св.г. и имеющей собственное движение 2,3"/ год. Из наблюдений было замечено, что координаты звезд медленно меняются вследствие их перемещения по небу. Итак, звезды движутся, т.е. меняют со временем свои координаты. К концу 18 века измерено собственное движение 13 звезд, а В. Гершель в 1783г открыл, что наше Солнце также движется в пространстве.

    Слайд 3

    Изменение положения звезд на небе

    Звезда Бернарда в созвездии Змееносца самая быстро перемещающаяся (10,31”/год) звезда на небе. Смещение звезд за 100 лет в сравнении с диском Луны. Звезды движутся с разными скоростями, в разном направлении и находятся на разном расстоянии от нас. Вследствие этого взаимное расположение звезд меняется со временем, что можно заметить в течение тысячелетий. Взаимное расположение группы звезд Большой Медведицы со временем. Какие звезды скорее всего принадлежит к одной группе?

    Слайд 4

    Пространственная скорость

    Так как r =a/π , то с учетом смещения μ получим r.μ =a.μ/π; но r.μ/год=υ, тогда подставляя числовые данные получим тангенциальную скоростьυτ =4,74.μ/π. Лучевую скорость υr определяют по спектру [эффект Х. Доплера (1803-1853, Австрия), установившего в 1842г, что длина волны источника изменяется в зависимости от направления движения] υr =∆λ.с/λо Применимость эффекта к световым волнам была доказана в 1900году в лабораторных условиях А. А. Белопольским(1854-1934). Состоит из: Vr-лучевая (по лучу зрения)скорость Vτ- тангенциальная скорость Из рисунка по теореме Пифагора

    Слайд 5

    Лучевая скорость

    На рисунках показано смещение линии водорода в спектре звезды в зависимости от направления движения звезды относительно Земли. Приближение - смещается к Фиолетовому (знак "-"). Удаление - смещается к Красному (знак "+"). Закон Доплера, где V – проекция скорости источника на луч зрения Первым измерил лучевые скорости нескольких ярких звезд в 1868г Уильям Хеггинс (1824 - 1910, Англия). С 1893г впервые в России Аристарх Аполлонович Белопольский (1854 - 1934) приступил к фотографированию звезд и проведя многочисленные точные измерения определил лучевые скорости 220 ярких (2,5-4m) звезд.

    Слайд 6

    Связь собственного движения звезд с их координатами

    Положение любой звезды в пространстве характеризуется экваториальными координатами. α - прямое восхождение δ - склонение Вследствие обращения Земли вокруг Солнца со скоростью V≈30 км/с, линии в спектре удаляющихся звезд дополнительно смещаются к красному концу спектра на ∆λ/λ=V/с=10-4, а при приближении на такую же величину к фиолетовому. Собственное движение звезд характеризуется: μα - собственное движение по прямому восхождению μδ - собственное движение по склонению Изменение координат звезды за год определяют по формулам: Δα=3,07с+1,34сsinα.tanδ Δδ=20,0".cosα

    Слайд 7

    Самые быстрые звезды неба

    Самая быстро перемещающаяся по небу звезда ß Змееносца (летящая Барнарда), открыта в 1916г Э. Барнард (1857-1923, США). m=9,7m , r=1,828 пк, μ =10,31"/год, красный карлик Лучевая скорость=106,88 км/с, Пространственная (под углом 38°)=142км/с. Собственные движения и лучевые скорости ярких звезд После измерения собственных движений > 50000 звезд, выяснилось, что самая быстрая звезда неба в созвездии Голубя (μ Col) имеет пространственную скорость=583км/с. На ряде обсерваторий мира, располагающих крупными телескопами, в том числе Крымской астрофизической, ведутся многолетние определения лучевой скорости звёзд. Но наиболее успешные измерения проведены КА для высокоточных измерений параллаксов «Гиппарх» (HIPPARCOS, работа 1990-1993гг).

Посмотреть все слайды

Поделиться