Integrarea funcţiilor trigonometrice. Integrale complexe Sinusul antiderivat pătrat

Sunt luate în considerare în detaliu exemple de soluții de integrale pe părți, al căror integrand este produsul unui polinom de o exponențială (e la puterea x) sau de un sinus (sin x) sau un cosinus (cos x).

Conţinut

Vezi si: Metoda de integrare pe părți
Tabelul integralelor nedefinite
Metode de calcul a integralelor nedefinite
Funcții elementare de bază și proprietățile lor

Formula de integrare pe părți

La rezolvarea exemplelor din această secțiune, se utilizează formula de integrare prin părți:
;
.

Exemple de integrale care conțin produsul unui polinom și sin x, cos x sau e x

Iată exemple de astfel de integrale:
, , .

Pentru a integra astfel de integrale, polinomul este notat cu u, iar partea rămasă cu v dx. Apoi, aplicați formula de integrare prin părți.

Mai jos este o soluție detaliată pentru aceste exemple.

Exemple de rezolvare a integralelor

Exemplu cu exponent, e la puterea lui x

Determinați integrala:
.

Să introducem exponentul sub semnul diferențial:
e - x dx = - e - x d(-x) = - d(e - x).

Să integrăm pe părți.

Aici
.
De asemenea, integrăm integrala rămasă pe părți.
.
.
.
În sfârșit avem:
.

Un exemplu de definire a unei integrale cu sinus

Calculați integrala:
.

Să introducem sinusul sub semnul diferențial:

Să integrăm pe părți.

aici u = x 2 , v = cos(2 x+3), du = ( x 2 )′ dx

De asemenea, integrăm integrala rămasă pe părți. Pentru a face acest lucru, introduceți cosinusul sub semnul diferențial.


aici u = x, v = sin(2 x+3), du = dx

În sfârșit avem:

Exemplu de produs al unui polinom și al cosinusului

Calculați integrala:
.

Să introducem cosinusul sub semnul diferențial:

Să integrăm pe părți.

aici u = x 2 + 3 x + 5, v = păcat 2 x, du = ( x 2 + 3 x + 5 )′ dx

Integrale complexe

Acest articol încheie subiectul integralelor nedefinite și include integrale pe care le consider destul de complexe. Lecția a fost creată la solicitările repetate ale vizitatorilor care și-au exprimat dorința ca pe site să fie analizate exemple mai dificile.

Se presupune că cititorul acestui text este bine pregătit și știe să aplice tehnicile de integrare de bază. Manichinii și oamenii care nu sunt foarte încrezători în integrale ar trebui să se refere la prima lecție - Integrală nedefinită. Exemple de soluții, unde poți stăpâni subiectul aproape de la zero. Studenții mai experimentați se pot familiariza cu tehnici și metode de integrare care nu au fost încă întâlnite în articolele mele.

Ce integrale vor fi luate în considerare?

Mai întâi vom lua în considerare integralele cu rădăcini, pentru soluția cărora o folosim succesiv înlocuire variabilăȘi integrare pe părți. Adică, într-un exemplu, două tehnici sunt combinate simultan. Și încă mai mult.

Apoi ne vom familiariza cu interesante și originale metoda de reducere a integralei la sine. Destul de multe integrale sunt rezolvate astfel.

Al treilea număr al programului va fi integrale ale fracțiilor complexe, care au trecut peste casa de casă în articolele anterioare.

În al patrulea rând, vor fi analizate integrale suplimentare din funcțiile trigonometrice. În special, există metode care evită înlocuirea trigonometrică universală consumatoare de timp.

(2) În funcția integrand, împărțim numărătorul la numitor termen cu termen.

(3) Folosim proprietatea de liniaritate a integralei nedefinite. În ultima integrală imediat puneți funcția sub semnul diferențial.

(4) Luăm integralele rămase. Rețineți că într-un logaritm puteți folosi paranteze mai degrabă decât un modul, deoarece .

(5) Efectuăm o înlocuire inversă, exprimând „te” din înlocuirea directă:

Studenții masochiști pot diferenția răspunsul și pot obține integrandul original, așa cum tocmai am făcut eu. Nu, nu, am făcut verificarea în sensul corect =)

După cum puteți vedea, în timpul soluției a trebuit să folosim chiar mai mult de două metode de soluție, așa că pentru a face față unor astfel de integrale aveți nevoie de abilități de integrare încrezătoare și destul de multă experiență.

În practică, desigur, rădăcina pătrată este mai comună; iată trei exemple pentru a o rezolva singur:

Exemplul 2

Aflați integrala nedefinită

Exemplul 3

Aflați integrala nedefinită

Exemplul 4

Aflați integrala nedefinită

Aceste exemple sunt de același tip, astfel încât soluția completă de la sfârșitul articolului va fi doar pentru Exemplul 2; Exemplele 3-4 au aceleași răspunsuri. Ce înlocuitor să folosiți la începutul deciziilor cred că este evident. De ce am ales exemple de același tip? Deseori găsite în rolul lor. Mai des, poate, doar ceva de genul .

Dar nu întotdeauna, când sub funcțiile arctangente, sinus, cosinus, exponențial și alte funcții există o rădăcină a unei funcții liniare, trebuie să utilizați mai multe metode simultan. Într-un număr de cazuri, este posibil să „coboare ușor”, adică imediat după înlocuire, se obține o integrală simplă, care poate fi luată cu ușurință. Cea mai ușoară dintre sarcinile propuse mai sus este Exemplul 4, în care, după înlocuire, se obține o integrală relativ simplă.

Prin reducerea integralei la sine

O metodă inteligentă și frumoasă. Să aruncăm o privire la clasicii genului:

Exemplul 5

Aflați integrala nedefinită

Sub rădăcină este un binom pătratic, iar încercarea de a integra acest exemplu poate da ceainicului o bătaie de cap ore în șir. O astfel de integrală este luată în părți și redusă la sine. În principiu, nu este dificil. Dacă știi cum.

Să notăm integrala luată în considerare printr-o literă latină și să începem soluția:

Să integrăm pe părți:

(1) Pregătiți funcția integrand pentru împărțirea termen cu termen.

(2) Împărțim termenul funcției integrand cu termen. Poate că nu este clar pentru toată lumea, dar o voi descrie mai detaliat:

(3) Folosim proprietatea de liniaritate a integralei nedefinite.

(4) Luați ultima integrală (logaritmul „lung”).

Acum să ne uităm la începutul soluției:

Si pana la final:

Ce s-a întâmplat? Ca urmare a manipulărilor noastre, integrala a fost redusă la sine!

Să echivalăm începutul și sfârșitul:

Deplasați-vă în partea stângă cu o schimbare de semn:

Și le mutăm pe cele două în partea dreaptă. Ca urmare:

Constanta, strict vorbind, ar fi trebuit adăugată mai devreme, dar am adăugat-o la sfârșit. Recomand cu tărie să citiți care este rigoarea aici:

Notă: Mai strict, etapa finală a soluției arată astfel:

Prin urmare:

Constanta poate fi redesemnată prin . De ce poate fi redenumit? Pentru că încă o acceptă orice valori, iar în acest sens nu există nicio diferență între constante și.
Ca urmare:

Un truc similar cu renotare constantă este utilizat pe scară largă în ecuatii diferentiale. Și acolo voi fi strict. Și aici permit o astfel de libertate doar pentru a nu vă încurca cu lucruri inutile și pentru a concentra atenția tocmai asupra metodei de integrare în sine.

Exemplul 6

Aflați integrala nedefinită

O altă integrală tipică pentru soluție independentă. Soluție completă și răspuns la sfârșitul lecției. Va fi o diferență cu răspunsul din exemplul anterior!

Dacă sub rădăcina pătrată există un trinom pătrat, atunci soluția se rezumă în orice caz la două exemple analizate.

De exemplu, luați în considerare integrala . Tot ce trebuie să faci este mai întâi selectați un pătrat complet:
.
În continuare, se efectuează o înlocuire liniară, care face „fără consecințe”:
, rezultând integrala . Ceva familiar, nu?

Sau acest exemplu, cu un binom pătratic:
Selectați un pătrat complet:
Și, după înlocuirea liniară, obținem integrala, care se rezolvă și folosind algoritmul deja discutat.

Să ne uităm la două exemple tipice despre cum să reduceți o integrală la sine:
– integrală a exponenţialului înmulţit cu sinus;
– integrală a exponenţialului înmulţit cu cosinus.

În integralele enumerate pe părți va trebui să integrați de două ori:

Exemplul 7

Aflați integrala nedefinită

Integrandul este exponențialul înmulțit cu sinusul.

Integram de două ori pe părți și reducem integrala la sine:


Ca urmare a dublei integrări pe părți, integrala a fost redusă la sine. Echivalăm începutul și sfârșitul soluției:

O mutam în partea stângă cu o schimbare de semn și ne exprimăm integrala:

Gata. În același timp, este indicat să pieptănați partea dreaptă, adică. scoateți exponentul din paranteze și puneți sinusul și cosinusul între paranteze într-o ordine „frumoasă”.

Acum să revenim la începutul exemplului, sau mai precis, la integrarea pe părți:

Am desemnat exponentul ca. Se pune întrebarea: este exponentul care trebuie notat întotdeauna cu? Nu este necesar. De fapt, în integrala considerată fundamental nu contează, ce înțelegem prin , am fi putut merge în altă direcție:

De ce este posibil acest lucru? Deoarece exponențialul se transformă în sine (atât în ​​timpul diferențierii, cât și în timpul integrării), sinusul și cosinusul se transformă reciproc unul în celălalt (din nou, atât în ​​timpul diferențierii, cât și în timpul integrării).

Adică putem desemna și o funcție trigonometrică. Dar, în exemplul luat în considerare, acest lucru este mai puțin rațional, deoarece vor apărea fracții. Dacă doriți, puteți încerca să rezolvați acest exemplu folosind a doua metodă; răspunsurile trebuie să se potrivească.

Exemplul 8

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Înainte de a vă decide, gândiți-vă ce este mai avantajos în acest caz să desemnați ca , o funcție exponențială sau o funcție trigonometrică? Soluție completă și răspuns la sfârșitul lecției.

Și, desigur, nu uitați că majoritatea răspunsurilor din această lecție sunt destul de ușor de verificat prin diferențiere!

Exemplele luate în considerare nu au fost cele mai complexe. În practică, integralele sunt mai frecvente acolo unde constanta este atât în ​​exponent, cât și în argumentul funcției trigonometrice, de exemplu: . Mulți oameni se vor încurca într-o astfel de integrală, iar eu deseori mă confund. Faptul este că există o probabilitate mare de apariție a fracțiilor în soluție și este foarte ușor să pierzi ceva prin nepăsare. În plus, există o mare probabilitate de eroare în semne; rețineți că exponentul are semnul minus, iar acest lucru introduce o dificultate suplimentară.

În etapa finală, rezultatul este adesea cam așa:

Chiar și la sfârșitul soluției, ar trebui să fii extrem de atent și să înțelegi corect fracțiile:

Integrarea fracțiilor complexe

Ne apropiem încet de ecuatorul lecției și începem să luăm în considerare integralele fracțiilor. Din nou, nu toate sunt super complexe, doar că dintr-un motiv sau altul exemplele au fost puțin „off topic” în alte articole.

Continuând tema rădăcinilor

Exemplul 9

Aflați integrala nedefinită

În numitorul de sub rădăcină există un trinom pătratic plus un „apendice” sub forma unui „X” în afara rădăcinii. O integrală de acest tip poate fi rezolvată folosind o substituție standard.

Noi decidem:

Înlocuirea aici este simplă:

Să ne uităm la viața după înlocuire:

(1) După înlocuire, reducem termenii de sub rădăcină la un numitor comun.
(2) O scoatem de sub rădăcină.
(3) Numătorul și numitorul se reduc cu . În același timp, sub rădăcină, am rearanjat termenii într-o ordine convenabilă. Cu ceva experiență, pașii (1), (2) pot fi săriți prin efectuarea orală a acțiunilor comentate.
(4) Integrala rezultată, după cum vă amintiți din lecție Integrarea unor fracții, se decide metoda de extracție a pătratului complet. Selectați un pătrat complet.
(5) Prin integrare obținem un logaritm „lung” obișnuit.
(6) Efectuăm înlocuirea inversă. Dacă inițial , apoi înapoi: .
(7) Acțiunea finală are drept scop îndreptarea rezultatului: sub rădăcină aducem din nou termenii la un numitor comun și îi scoatem de sub rădăcină.

Exemplul 10

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Aici se adaugă o constantă la singurul „X”, iar înlocuirea este aproape aceeași:

Singurul lucru pe care trebuie să-l faceți în plus este să exprimați „x” de la înlocuirea care se efectuează:

Soluție completă și răspuns la sfârșitul lecției.

Uneori, într-o astfel de integrală poate exista un binom pătratic sub rădăcină, acest lucru nu schimbă metoda de soluție, va fi și mai simplu. Simte diferenta:

Exemplul 11

Aflați integrala nedefinită

Exemplul 12

Aflați integrala nedefinită

Scurte soluții și răspunsuri la sfârșitul lecției. Trebuie remarcat faptul că Exemplul 11 ​​este exact integrală binomială, a cărui metodă de rezolvare a fost discutată la clasă Integrale ale funcțiilor iraționale.

Integrală a unui polinom necompunebil de gradul 2 la putere

(polinom la numitor)

Un tip mai rar de integrală, dar întâlnită totuși în exemple practice.

Exemplul 13

Aflați integrala nedefinită

Dar să revenim la exemplul cu numărul norocos 13 (sincer, nu am ghicit corect). Această integrală este, de asemenea, una dintre cele care pot fi destul de frustrante dacă nu știi cum să rezolvi.

Soluția începe cu o transformare artificială:

Cred că toată lumea înțelege deja cum se împarte numărătorul la numitor termen cu termen.

Integrala rezultată este luată în părți:

Pentru o integrală de forma ( – număr natural) derivăm recurent formula de reducere:
, Unde – integrală de un grad mai mic.

Să verificăm validitatea acestei formule pentru integrala rezolvată.
În acest caz: , , folosim formula:

După cum puteți vedea, răspunsurile sunt aceleași.

Exemplul 14

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Soluția eșantion utilizează formula de mai sus de două ori consecutiv.

Dacă sub gradul este indivizibil trinom pătrat, atunci soluția este redusă la un binom prin izolarea pătratului perfect, de exemplu:

Ce se întâmplă dacă există un polinom suplimentar în numărător? În acest caz, se utilizează metoda coeficienților nedeterminați, iar funcția integrand este extinsă într-o sumă de fracții. Dar în practica mea există un astfel de exemplu niciodată întâlnit, așa că am ratat acest caz în articol Integrale ale funcțiilor fracționale-raționale, îl voi omite acum. Dacă încă întâlniți o astfel de integrală, uitați-vă la manual - totul este simplu acolo. Nu cred că este indicat să includem materiale (chiar simple), probabilitatea de întâlnire care tinde spre zero.

Integrarea funcțiilor trigonometrice complexe

Adjectivul „complex” pentru majoritatea exemplelor este din nou în mare măsură condiționat. Să începem cu tangente și cotangente în puteri mari. Din punctul de vedere al metodelor de rezolvare folosite, tangenta și cotangenta sunt aproape același lucru, așa că voi vorbi mai mult despre tangentă, ceea ce înseamnă că metoda demonstrată de rezolvare a integralei este valabilă și pentru cotangente.

În lecția de mai sus ne-am uitat substituție trigonometrică universală pentru rezolvarea unui anumit tip de integrale ale funcţiilor trigonometrice. Dezavantajul substituției trigonometrice universale este că utilizarea sa duce adesea la integrale greoaie cu calcule dificile. Și în unele cazuri, înlocuirea trigonometrică universală poate fi evitată!

Să luăm în considerare un alt exemplu canonic, integrala unuia împărțită la sinus:

Exemplul 17

Aflați integrala nedefinită

Aici puteți folosi substituția trigonometrică universală și puteți obține răspunsul, dar există o modalitate mai rațională. Voi oferi soluția completă cu comentarii pentru fiecare pas:

(1) Folosim formula trigonometrică pentru sinusul unui unghi dublu.
(2) Efectuăm o transformare artificială: Împărțim la numitor și înmulțim cu .
(3) Folosind formula binecunoscută la numitor, transformăm fracția într-o tangentă.
(4) Aducem funcția sub semnul diferențial.
(5) Luați integrala.

Câteva exemple simple pe care le puteți rezolva singur:

Exemplul 18

Aflați integrala nedefinită

Notă: primul pas ar trebui să fie utilizarea formulei de reducere și efectuați cu atenție acțiuni similare cu exemplul anterior.

Exemplul 19

Aflați integrala nedefinită

Ei bine, acesta este un exemplu foarte simplu.

Soluții complete și răspunsuri la sfârșitul lecției.

Cred că acum nimeni nu va avea probleme cu integralele:
și așa mai departe.

Care este ideea metodei? Ideea este de a folosi transformări și formule trigonometrice pentru a organiza doar tangente și derivata tangentă în integrand. Adică vorbim despre înlocuirea: . În exemplele 17-19 am folosit de fapt această înlocuire, dar integralele au fost atât de simple încât ne-am descurcat cu o acțiune echivalentă - subsumând funcția sub semnul diferențial.

Raționament similar, așa cum am menționat deja, poate fi efectuat pentru cotangentă.

Există, de asemenea, o condiție prealabilă formală pentru aplicarea înlocuirii de mai sus:

Suma puterilor cosinusului și sinusului este un număr întreg negativ PAR, De exemplu:

pentru integrală – un număr întreg negativ PAR.

! Notă : dacă integrandul conține DOAR un sinus sau DOAR un cosinus, atunci integrala este luată și pentru un grad impar negativ (cele mai simple cazuri sunt în Exemplele nr. 17, 18).

Să ne uităm la câteva sarcini mai semnificative bazate pe această regulă:

Exemplul 20

Aflați integrala nedefinită

Suma puterilor sinusului și cosinusului: 2 – 6 = –4 este un număr întreg negativ PAR, ceea ce înseamnă că integrala poate fi redusă la tangente și derivata ei:

(1) Să transformăm numitorul.
(2) Folosind formula binecunoscută, obținem .
(3) Să transformăm numitorul.
(4) Folosim formula .
(5) Aducem funcția sub semnul diferențial.
(6) Efectuăm înlocuirea. Este posibil ca studenții mai experimentați să nu efectueze înlocuirea, dar este totuși mai bine să înlocuiți tangenta cu o singură literă - există mai puțin risc de confuzie.

Exemplul 21

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur.

Stai acolo, rundele campionatului sunt pe cale să înceapă =)

Adesea, integrandul conține un „mezul”:

Exemplul 22

Aflați integrala nedefinită

Această integrală conține inițial o tangentă, care duce imediat la un gând deja familiar:

Voi lăsa transformarea artificială chiar de la început și pașii rămași fără comentarii, deoarece totul a fost deja discutat mai sus.

Câteva exemple creative pentru propria dvs. soluție:

Exemplul 23

Aflați integrala nedefinită

Exemplul 24

Aflați integrala nedefinită

Da, în ele, desigur, puteți reduce puterile sinusului și cosinusului și puteți utiliza o substituție trigonometrică universală, dar soluția va fi mult mai eficientă și mai scurtă dacă este efectuată prin tangente. Soluție completă și răspunsuri la sfârșitul lecției

În practică, este adesea necesar să se calculeze integrale ale funcțiilor transcendentale care conțin funcții trigonometrice. Ca parte a acestui material, vom descrie principalele tipuri de funcții integrand și vom arăta ce metode pot fi utilizate pentru a le integra.

Integrarea sinus, cosinus, tangentă și cotangentă

Să începem cu metode de integrare a funcțiilor trigonometrice de bază - sin, cos, t g, c t g. Folosind tabelul cu antiderivate, scriem imediat că ∫ sin x d x = - cos x + C și ∫ cos x d x = sin x + C.

Pentru a calcula integralele nedefinite ale funcțiilor t g și c t g, puteți folosi semnul diferențial:

∫ t g x d x = ∫ sin x cos x d x = d (cos x) = - sin x d x = = - ∫ d (cos x) cos x = - ln cos x + C ∫ c t g x d x = ∫ cos x sin x d x = d (sin x) = cos x d x = = ∫ d (sin x) sin x = ln sin x + C

Cum am obținut formulele ∫ d x sin x = ln 1 - cos x sin x + C și ∫ d x cos x = ln 1 + sin x cos x + C, luate din tabelul cu antiderivate? Să explicăm un singur caz, deoarece al doilea va fi clar prin analogie.

Folosind metoda substituției, scriem:

∫ d x sin x = sin x = t ⇒ x = a r c sin y ⇒ d x = d t 1 - t 2 = d t t 1 - t 2

Aici trebuie să integrăm funcția irațională. Folosim aceeași metodă de înlocuire:

∫ d t t 1 - t 2 = 1 - t 2 = z 2 ⇒ t = 1 - z 2 ⇒ d t = - z d z 1 - z 2 = = ∫ - z d z z 1 - z 2 1 - z 2 = ∫ d z = z 1 - z 2 ∫ d z (z - 1) (z +) = = 1 2 ∫ d z z - 1 - 1 2 ∫ d z z + 1 = 1 2 ln z - 1 - 1 2 z + 1 + C = = 1 2 ln z - 1 z + 1 + C = ln z - 1 z + 1 + C

Acum facem substituția inversă z = 1 - t 2 și t = sin x:

∫ d x sin x = ∫ d t t 1 - t 2 = ln z - 1 z + 1 + C = = ln 1 - t 2 - 1 1 - t 2 + 1 + C = ln 1 - sin 2 x - 1 1 - sin 2 x + 1 + C = = ln cos x - 1 cos x + 1 + C = ln (cos x - 1) 2 sin 2 x + C = = ln cos x - 1 sin x + C

Vom analiza separat cazurile cu integrale care conțin puteri ale funcțiilor trigonometrice, cum ar fi ∫ sin n x d x, ∫ cos n x d x, ∫ d x sin n x, ∫ d x cos n x.

Puteți citi despre cum să le calculați corect în articolul despre integrare folosind formule de recurență. Dacă știți cum sunt derivate aceste formule, puteți lua cu ușurință integrale precum ∫ sin n x · cos m x d x cu m și n natural.

Dacă avem o combinație de funcții trigonometrice cu polinoame sau funcții exponențiale, atunci acestea vor trebui integrate pe părți. Vă recomandăm să citiți un articol dedicat metodelor de găsire a integralelor ∫ P n (x) · sin (a x) d x , ∫ P n (x) · cos (a x) d x , ∫ e a · x · sin (a x) d x , ∫ e a · x · cos (a x) d x .

Cele mai dificile probleme sunt cele în care integrandul include funcții trigonometrice cu argumente diferite. Pentru a face acest lucru, trebuie să utilizați formule de trigonometrie de bază, așa că este recomandabil să le memorați sau să păstrați o notă a acestora la îndemână.

Exemplul 1

Aflați mulțimea de antiderivate ale funcției y = sin (4 x) + 2 cos 2 (2 x) sin x · cos (3 x) + 2 cos 2 x 2 - 1 · sin (3 x) .

Soluţie

Să folosim formulele pentru reducerea gradului și să scriem că cos 2 x 2 = 1 + cos x 2 și cos 2 2 x = 1 + cos 4 x 2. Mijloace,

y = sin (4 x) + 2 cos 2 (2 x) sin x cos (3 x) + 2 cos 2 x 2 - 1 sin (3 x) = sin (4 x) + 2 1 + cos 4 x 2 sin x cos (3 x) + 2 1 + cos x 2 - 1 sin (3 x) = = sin (4 x) + cos (4 x) + 1 sin x cos (3 x) + cos x sin (3 x)

La numitor avem formula pentru sinusul sumei. Apoi o poți scrie așa:

y = sin (4 x) + cos (4 x) + 1 sin x cos (3 x) + cos x sin (3 x) = sin (4 x) + cos (4 x) + 1 sin (4 x ) = = 1 + cos (4 x) sin (4 x)

Obținem suma a 3 integrale.

∫ sin (4 x) + cos (4 x) + 1 sin x · cos (3 x) + cos x · sin (3 x) d x = = ∫ d x + cos (4 x) d x sin (4 x) + ∫ d x sin (4 x) = = x + 1 4 ln ∫ d (sin (4 x)) sin (4 x) + 1 4 ln cos (4 x) - 1 sin (4 x) = = 1 4 ln sin ( 4 x) + 1 4 ln cos (4 x) - 1 sin (4 x) + C = x + 1 4 ln cos 4 x - 1 + C

În unele cazuri, funcțiile trigonometrice sub integrală pot fi reduse la expresii raționale fracționale folosind metoda de substituție standard. În primul rând, să luăm formule care exprimă sin, cos și t g prin tangenta semiargumentului:

sin x = 2 t g x 2 1 + t g 2 x 2 , sin x = 1 - t g 2 x 2 1 + t g 2 x 2 , t g x = 2 t g x 2 1 - t g 2 x 2

Va trebui, de asemenea, să exprimăm diferența d x în termenii tangentei semiunghiului:

Deoarece d t g x 2 = t g x 2 "d x = d x 2 cos 2 x 2, atunci

d x = 2 cos 2 x 2 d t g x 2 = 2 d t g x 2 1 cos 2 x 2 = 2 d t g x 2 cos 2 x 2 + sin 2 x 2 cos 2 x 2 = 2 d t g x 2 1 + t g 2 x 2

Astfel, sin x = 2 z 1 + z 2, cos x 1 - z 2 1 + z 2, t g x 2 z 1 - z 2, d x = 2 d z 1 + z 2 la z = t g x 2.

Exemplul 2

Aflați integrala nedefinită ∫ d x 2 sin x + cos x + 2 .

Soluţie

Folosim metoda substituției trigonometrice standard.

2 sin x + cos x + 2 = 2 2 z 1 + z 2 + 1 - z 2 1 + z 2 = z 2 + 4 z + 3 1 + z 2 ⇒ d x 2 sin x + cos x + 2 = 2 d z 1 + z 2 z 2 + 4 z + 3 1 + z 2 = 2 d z z 2 + 4 z + 3

Obținem că ∫ d x 2 sin x + cos x + 2 = 2 d z z 2 + 4 z + 3 .

Acum putem extinde integralul în fracții simple și obținem suma a două integrale:

∫ d x 2 sin x + cos x + 2 = 2 ∫ 2 d z z 2 + 4 z + 3 = 2 ∫ 1 2 1 z + 1 - 1 z + 3 d z = = ∫ d z z + 1 - ∫ C z + 3 = ln z + 1 - ln z + 3 + C = ln z + 1 z + 3 + C

∫ d x 2 sin x + cos x + 2 = ln z + 1 z + 3 + C = ln t g x 2 + 1 t g x 2 + 3 + C

Răspuns: ∫ d x 2 sin x + cos x + 2 = ln t g x 2 + 1 t g x 2 + 3 + C

Este important de reținut că acele formule care exprimă funcții prin tangenta unui semiargument nu sunt identități, prin urmare, expresia rezultată ln t g x 2 + 1 t g x 2 + 3 + C este mulțimea de antiderivate ale funcției y = 1 2 sin x + cos x + 2 numai pe domeniul definiției.

Pentru a rezolva alte tipuri de probleme, puteți utiliza metode de integrare de bază.

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Pentru a integra funcții raționale de forma R(sin x, cos x), se folosește o substituție, care se numește substituție trigonometrică universală. Apoi . Substituția trigonometrică universală duce adesea la calcule mari. Prin urmare, ori de câte ori este posibil, utilizați următoarele înlocuiri.

Integrarea funcţiilor dependente raţional de funcţiile trigonometrice

1. Integrale de forma ∫ sin n xdx , ∫ cos n xdx , n>0
a) Dacă n este impar, atunci o putere a lui sinx (sau cosx) trebuie introdusă sub semnul diferenţialului, iar din puterea par rămasă trebuie trecută la funcţia opusă.
b) Dacă n este par, atunci folosim formule pentru reducerea gradului
2. Integrale de forma ∫ tg n xdx , ∫ ctg n xdx , unde n este un număr întreg.
Trebuie folosite formule

3. Integrale de forma ∫ sin n x cos m x dx
a) Fie m și n de parități diferite. Folosim substituția t=sin x dacă n este impar sau t=cos x dacă m este impar.
b) Dacă m și n sunt pare, atunci folosim formule pentru reducerea gradului
2sin 2 x=1-cos2x , 2cos 2 x=1+cos2x .
4. Integrale ale formei
Dacă numerele m și n sunt de aceeași paritate, atunci folosim substituția t=tg x. Este adesea convenabil să folosiți tehnica unității trigonometrice.
5. ∫ sin(nx) cos(mx)dx , ∫ cos(mx) cos(nx)dx , ∫ sin(mx) sin(nx)dx

Să folosim formulele pentru conversia produsului funcțiilor trigonometrice în suma lor:

  • sin α cos β = ½(sin(α+β)+sin(α-β))
  • cos α cos β = ½(cos(α+β)+cos(α-β))
  • sin α sin β = ½(cos(α-β)-cos(α+β))

Exemple
1. Calculați integrala ∫ cos 4 x·sin 3 xdx .
Facem înlocuirea cos(x)=t. Atunci ∫ cos 4 x sin 3 xdx =
2. Calculați integrala.
Făcând înlocuirea sin x=t , obținem


3. Aflați integrala.
Facem înlocuirea tg(x)=t . Înlocuind, obținem


Integrarea expresiilor de forma R(sinx, cosx)

Exemplul nr. 1. Calculați integralele:

Soluţie.
a) Integrarea expresiilor de forma R(sinx, cosx), unde R este o funcție rațională a sin x și cos x, sunt convertite în integrale ale funcțiilor raționale folosind substituția trigonometrică universală tg(x/2) = t.
Atunci noi avem


O substituție trigonometrică universală face posibilă trecerea de la o integrală de forma ∫ R(sinx, cosx) dx la o integrală a unei funcții raționale fracționale, dar adesea o astfel de substituție duce la expresii greoaie. În anumite condiții, substituțiile mai simple sunt eficiente:
  • Dacă egalitatea R(-sin x, cos x) = -R(sin x, cos x)dx este satisfăcută, atunci se aplică substituția cos x = t.
  • Dacă egalitatea R(sin x, -cos x) = -R(sin x, cos x)dx este valabilă, atunci substituția sin x = t.
  • Dacă egalitatea R(-sin x, -cos x) = R(sin x, cos x)dx este valabilă, atunci substituția tgx = t sau ctg x = t.
În acest caz, pentru a găsi integrala
să aplicăm substituția trigonometrică universală tg(x/2) = t.
Apoi raspunde:

Vor fi, de asemenea, probleme pe care le rezolvați singur, la care puteți vedea răspunsurile.

Integrandul poate fi convertit din produsul funcțiilor trigonometrice în sumă

Să considerăm integralele în care integrandul este produsul dintre sinusuri și cosinusuri de gradul întâi al lui x înmulțit cu diferiți factori, adică integrale de forma

Folosind formule trigonometrice binecunoscute

(2)
(3)
(4)
se poate transforma fiecare dintre produsele în integrale de forma (31) într-o sumă algebrică și se integrează după formulele

(5)

(6)

Exemplul 1. Găsi

Soluţie. Conform formulei (2) la

Exemplul 2. Găsi integrală a unei funcții trigonometrice

Soluţie. Conform formulei (3) la

Exemplul 3. Găsi integrală a unei funcții trigonometrice

Soluţie. Conform formulei (4) la obținem următoarea transformare a integrandului:

Aplicând formula (6), obținem

Integrală a produsului puterilor sinusului și cosinusului aceluiași argument

Să considerăm acum integralele funcțiilor care sunt produsul puterilor sinusului și cosinusului aceluiași argument, i.e.

(7)

În cazuri speciale, unul dintre indicatorii ( m sau n) poate fi zero.

La integrarea unor astfel de funcții, se folosește că o putere pară a cosinusului poate fi exprimată prin sinus, iar diferența sinusului este egală cu cos x dx(sau chiar puterea sinusului poate fi exprimată în termeni de cosinus, iar diferența de cosinus este egală cu - sin x dx ) .

Trebuie distinse două cazuri: 1) cel puțin unul dintre indicatori mȘi n ciudat; 2) ambii indicatori sunt egali.

Să aibă loc primul caz, și anume indicatorul n = 2k+ 1 - impar. Atunci, având în vedere că

Integrandul este prezentat în așa fel încât o parte a acestuia este o funcție numai a sinusului, iar cealaltă este diferența de sinus. Acum se utilizează înlocuirea variabilă t= păcat X soluţia se reduce la integrarea polinomului în raport cu t. Dacă numai gradul m este ciudat, atunci ei fac la fel, izolând factorul sin X, exprimând restul integrandului în termeni de cos Xși crezând t=cos X. Această tehnică poate fi folosită și când integrând puterile câte ale sinusului și cosinusului , Când cel puțin unul dintre indicatori este impar . Ideea este că câtul puterilor sinusului și cosinusului este un caz special al produsului lor : Când o funcție trigonometrică se află la numitorul unui integrand, gradul acesteia este negativ. Dar există și cazuri de funcții trigonometrice parțiale, când puterile lor sunt doar pare. Despre ei - în paragraful următor.

Dacă ambii indicatori mȘi n– chiar, atunci, folosind formule trigonometrice

reduceți exponenții sinusului și cosinusului, după care se obține o integrală de același tip ca mai sus. Prin urmare, integrarea ar trebui continuată conform aceleiași scheme. Dacă unul dintre exponenții pare este negativ, adică se ia în considerare câtul puterilor pare ale sinusului și cosinusului, atunci această schemă nu este potrivită . Apoi se folosește o schimbare de variabilă în funcție de modul în care poate fi transformat integrantul. Un astfel de caz va fi luat în considerare în paragraful următor.

Exemplul 4. Găsi integrală a unei funcții trigonometrice

Soluţie. Exponentul cosinus este impar. Prin urmare, să ne imaginăm

t= păcat X(Apoi dt=cos X dx ). Apoi primim

Revenind la vechea variabilă, găsim în sfârșit

Exemplul 5. Găsi integrală a unei funcții trigonometrice

.

Soluţie. Exponentul cosinus, ca în exemplul anterior, este impar, dar mai mare. Să ne imaginăm

și faceți o schimbare de variabilă t= păcat X(Apoi dt=cos X dx ). Apoi primim

Să deschidem parantezele

și primim

Revenind la vechea variabilă, obținem soluția

Exemplul 6. Găsi integrală a unei funcții trigonometrice

Soluţie. Exponenții sinusului și cosinusului sunt pari. Prin urmare, transformăm funcția integrand după cum urmează:

Apoi primim

În a doua integrală facem o schimbare de variabilă, setare t= sin2 X. Apoi (1/2)dt= cos2 X dx . Prin urmare,

În sfârșit, obținem

Folosind metoda de înlocuire a variabilelor

Metoda de înlocuire a variabilei la integrarea funcțiilor trigonometrice, poate fi utilizat în cazurile în care integrandul conține numai sinus sau numai cosinus, produsul dintre sinus și cosinus, în care fie sinus, fie cosinus este la gradul I, tangentă sau cotangentă, precum și câtul dintre chiar şi puteri de sinus şi cosinus ale unuia şi aceluiaşi argument. În acest caz, este posibil să se efectueze permutări nu numai păcat X = tși păcatul X = t, dar și tg X = t si ctg X = t .

Exemplul 8. Găsi integrală a unei funcții trigonometrice

.

Soluţie. Să schimbăm variabila: , apoi . Integrandul rezultat poate fi integrat cu ușurință folosind tabelul de integrale:

.

Exemplul 9. Găsi integrală a unei funcții trigonometrice

Soluţie. Să transformăm tangenta în raportul dintre sinus și cosinus:

Să schimbăm variabila: , apoi . Integrandul rezultat este tabel integral cu semnul minus:

.

Revenind la variabila inițială, obținem în sfârșit:

.

Exemplul 10. Găsi integrală a unei funcții trigonometrice

Soluţie. Să schimbăm variabila: , apoi .

Să transformăm integrantul pentru a aplica identitatea trigonometrică :

Schimbăm variabila, fără a uita să punem semnul minus în fața integralei (vezi mai sus, ce este egal cu dt). În continuare, factorizăm integrandul și integrăm conform tabelului:

Revenind la variabila inițială, obținem în sfârșit:

.

Găsiți singur integrala unei funcții trigonometrice și apoi uitați-vă la soluție

Substituție trigonometrică universală

Substituție trigonometrică universală poate fi utilizat în cazurile în care integrantul nu se încadrează în cazurile discutate în paragrafele precedente. Practic, când sinusul sau cosinusul (sau ambele) se află în numitorul unei fracții. S-a dovedit că sinusul și cosinusul pot fi înlocuite cu o altă expresie care conține tangenta jumătății unghiului inițial, după cum urmează:

Dar rețineți că substituția trigonometrică universală implică adesea transformări algebrice destul de complexe, deci este cel mai bine utilizată atunci când nicio altă metodă nu funcționează. Să ne uităm la exemple în care, împreună cu substituția trigonometrică universală, se utilizează substituția sub semn diferențial și metoda coeficienților nedeterminați.

Exemplul 12. Găsi integrală a unei funcții trigonometrice

.

Soluţie. Soluţie. Să profităm substituție trigonometrică universală. Apoi
.

Înmulțim fracțiile din numărător și numitor cu , și le scoatem pe cele două și le punem în fața semnului integral. Apoi

Acțiune