Изменение количества движения механической системы. Теоремы об изменении количества движения точки и системы Закон об изменении количества движения точки

Состоящую из n материальных точек. Выделим из этой системы некоторую точку M j с массой m j . На эту точку, как известно, действуют внешние и внутренние силы .

Приложим к точке M j равнодействующую всех внутренних сил F j i и равнодействующую всех внешних сил F j e (рисунок 2.2). Для выделенной материальной точки M j (как для свободной точки) запишем теорему об изменении количества движения в дифференциальной форме (2.3):

Запишем аналогичные уравнения для всех точек механической системы (j=1,2,3,…,n) .

Рисунок 2.2

Сложим почленно все n уравнений:

∑d(m j ×V j)/dt = ∑F j e + ∑F j i , (2.9)

d∑(m j ×V j)/dt = ∑F j e + ∑F j i . (2.10)

Здесь ∑m j ×V j =Q – количество движения механической системы;
∑F j e = R e – главный вектор всех внешних сил, действующих на механическую систему;
∑F j i = R i =0 – главный вектор внутренних сил системы (по свойству внутренних сил он равен нулю).

Окончательно для механической системы получаем

dQ/dt = R e . (2.11)

Выражение (2.11) представляет собой теорему об изменении количества движения механической системы в дифференциальной форме (в векторном выражении): производная по времени от вектора количества движения механической системы равна главному вектору всех внешних сил, действующих на систему .

Проецируя векторное равенство (2.11) на декартовы оси координат, получаем выражения для теоремы об изменении количества движения механической системы в координатном (скалярном) выражении:

dQ x /dt = R x e ;

dQ y /dt = R y e ;

dQ z /dt = R z e , (2.12)

т.е. производная по времени от проекции количества движения механической системы на какую-либо ось равна проекции на эту ось главного вектора всех действующих на эту механическую систему внешних сил .

Умножая обе части равенства (2.12) на dt , получим теорему в другой дифференциальной форме:

dQ = R e ×dt = δS e , (2.13)

т.е. дифференциал количества движения механической системы равен элементарному импульсу главного вектора (сумме элементарных импульсов) всех внешних сил, действующих на систему .

Интегрируя равенство (2.13) в пределах изменения времени от 0 до t , получаем теорему об изменении количества движения механической системы в конечной (интегральной) форме (в векторном выражении):

Q — Q 0 = S e ,

т.е. изменение количества движения механической системы за конечный промежуток времени равно полному импульсу главного вектора (сумме полных импульсов) всех внешних сил, действующих на систему за тот же промежуток времени .

Проецируя векторное равенство (2.14) на декартовы оси координат, получим выражения для теоремы в проекциях (в скалярном выражении):

т.е. изменение проекции количества движения механической системы на какую-либо ось за конечный промежуток времени равно проекции на эту же ось полного импульса главного вектора (сумме полных импульсов) всех действующих на механическую систему внешних сил за тот же промежуток времени .

Из рассмотренной теоремы (2.11) – (2.15) вытекают следствия:

  1. Если R e = ∑F j e = 0 , то Q = const – имеем закон сохранения вектора количества движения механической системы: если главный вектор R e всех внешних сил, действующих на механическую систему, равен нулю, то вектор количества движения этой системы остается постоянным по величине и направлению и равным своему начальному значению Q 0 , т.е. Q = Q 0 .
  2. Если R x e = ∑X j e =0 (R e ≠ 0) , то Q x = const – имеем закон сохранения проекции на ось количества движения механической системы: если проекция главного вектора всех действующих на механическую систему сил на какую-либо ось равна нулю, то проекция на эту же ось вектора количества движения этой системы будет величиной постоянной и равной проекции на эту ось начального вектора количества движения, т.е. Q x = Q 0x .

Дифференциальная форма теоремы об изменении количества движения материальной системы имеет важные и интересные приложения в механике сплошной среды. Из (2.11) можно получить теорему Эйлера.

Просмотр: эта статья прочитана 14066 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Количество движения

Количество движения материальной точки - векторная величина, равная произведению массы точки на вектор ее скорости.

Единицей измерения количества движения является (кг м/с).

Количество движения механической системы - векторная величина, равная геометрической сумме (главному вектору) количества движения механической системы равняется произведению массы всей системы на скорость ее центра масс.

Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (например, вращение тела вокруг неподвижной оси, проходящей через центр масс тела).

В случае сложного движения, количество движения системы не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).

Импульс силы

Импульс силы характеризует действие силы за некоторый промежуток времени.

Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов.

Теорема об изменении количества движения материальной точки

(в дифференциальной форм е ):

Производная по времени от количества движения материальной точки равна геометрической сумме действующих на точки сил.

(в интегральной форме ):

Изменение количества движения материальной точки за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за этот промежуток времени.

Теорема об изменении количества движения механической системы

(в дифференциальной форме ):

Производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

(в интегральной форме ):

Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов внешних сил, действующих на систему за этот промежуток времени.

Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.

Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.

Закон сохранения количества движения системы

  1. Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равна нулю, то проекция количества движения на эту ось является величиной постоянной.

Выводы :

  1. Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.
  2. Теорема об изменении количества движения механической системы не характеризует вращательное движение механической системы, а только поступательное.

Приведен пример: Определить количество движения диска определенной массы, если известна его угловая скорость и размер.

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов


Применение теоремы об изменении кинетического момента
Пример решения задачи на применение теоремы об изменении кинетического момента для определения угловой скорости тела, совершающего вращение вокруг неподвижной оси.

Рассмотрим систему, состоящую из материальных точек. Составим для этой системы дифференциальные уравнения движения (13) и сложим их почленно. Тогда получим

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будет:

Найдем другое выражение теоремы. Пусть в момент времени количество движения системы равно а в момент становится равным . Тогда, умножая обе части равенства (20) на и интегрируя, получим

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение (21) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов, действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будет:

Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как , то, подставляя это значение в равенство (20) и учитывая, что получим , т. е. уравнение (16).

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. § 114).

Общие теоремы динамики системы тел. Теоремы о движении центра масс, об изменении количества движения, об изменении главного момента количества движения, об изменении кинетической энергии. Принципы Даламбера, и возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа.

Содержание

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Поделиться