Математический и пружинный маятники. Формула частоты колебаний пружинного маятника Пружинный маятник период

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$

Определение 1

Свободные колебания могут совершаться под действием внутренних сил только после выведения из положения равновесия всей системы.

Чтобы колебания совершались согласно гармоническому закону, нужно, чтобы сила, возвращающая тело в положение равновесия, была пропорциональна смещению тела из равновесного положения и направлена в сторону, противоположную смещению.

F (t) = m a (t) = - m ω 2 x (t) .

Соотношение говорит о том, что ω является частотой гармонического колебания. Данное свойство характерно для упругой силы в пределах применимости закона Гука:

F у п р = - k x .

Определение 2

Силы любой природы, которые удовлетворяют условию, называют квазиупругими .

То есть груз с массой m , прикрепляющийся к пружине жесткости k с неподвижным концом, изображенным на рисунке 2 . 2 . 1 , составляют систему, способную совершать гармонические свободные колебания при отсутствии силы трения.

Определение 3

Груз, располагаемый на пружине, называют линейным гармоническим осциллятором.

Рисунок 2 . 2 . 1 . Колебания груза на пружине. Трения нет.

Круговая частота

Нахождение круговой частоты ω 0 производится с помощью применения формулы второго закона Ньютона:

m a = - k x = m ω 0 2 x .

Значит, получаем:

Определение 4

Частоту ω 0 называют собственной частотой колебательной системы .

Определение периода гармонических колебаний груза на пружине Т находится из формулы:

T = 2 π ω 0 = 2 π m k .

Горизонтальное расположение системы пружина-груз, сила тяжести компенсируется силой реакции опоры. При подвешивании груза на пружину направление силы тяжести идет по линии движения груза. Положение равновесия растянутой пружины равняется:

x 0 = m g k , тогда как колебания выполняются около нового равновесного состояния. Формулы собственной частоты ω 0 и периода колебаний Т в вышеуказанных выражениях являются справедливыми.

Определение 5

При имеющейся математической связи между ускорением тела а и координатой х поведение колебательной системы характеризуется строгим описанием: ускорение является второй производной координаты тела х по времени t:

Описание второго закона Ньютона с грузом на пружине запишется как:

m a - m x = - k x , или x ¨ + ω 0 2 x = 0 , где свободная частота ω 0 2 = k m .

Если физические системы зависят от формулы x ¨ + ω 0 2 x = 0 , тогда они в состоянии совершать свободные колебательные гармонические движения с различной амплитудой. Это возможно, так как применяется x = x m cos (ω t + φ 0) .

Определение 6

Уравнение вида x ¨ + ω 0 2 x = 0 получило название уравнения свободных колебаний . Их физические свойства могут определять только собственную частоту колебаний ω 0 или период Т.

Амплитуда x m и начальная фаза φ 0 находят при помощи способа, который вывел их из состояния равновесия начального момента времени.

Пример 1

При наличии смещенного груза из положения равновесия на расстояние ∆ l и моменте времени, равном t = 0 , производится его опускание без начальной скорости. Тогда x m = ∆ l , φ 0 = 0 . Если груз находился в положении равновесия, то при толчке передается начальная скорость ± υ 0 , отсюда x m = m k υ 0 , φ 0 = ± π 2 .

Амплитуда x m с начальной фазой φ 0 определяются наличием начальных условий.

Рисунок 2 . 2 . 2 . Модель свободных колебаний груза на пружине.

Механические колебательные системы отличаются наличием сил упругих деформаций в каждой из них. Рисунок 2 . 2 . 2 показывает угловой аналог гармонического осциллятора, совершающий крутильные колебания. Диск располагается горизонтально и висит на упругой нити, закрепленной в его центре масс. Если его повернуть на угол θ , тогда возникает момент силы упругой деформации кручения M у п р:

M у п р = - x θ .

Данное выражение не соответствует закону Гука для деформации кручения. Величина x аналогична k жесткости пружины. Запись второго закона Ньютона для вращательного движения диска принимает вид

I ε = M у п р = - x θ или I θ ¨ = - x θ , где моментом инерции обозначается I = I C , а ε – угловое ускорение.

Аналогично с формулой пружинного маятника:

ω 0 = x I , T = 2 π I x .

Применение крутильного маятника замечено в механических часах. Он получил название балансира, в котором создание момента упругих сил производится при помощи спиралевидной пружины.

Рисунок 2 . 2 . 3 . Крутильный маятник.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так:

, где f(x) - это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания , пропорционального скорости колебаний с коэффициентом c :

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пружинный маятник" в других словарях:

    У этого термина существуют и другие значения, см. Маятник (значения). Колебания маятника: стрелками показаны векторы скорости (v) и ускорения (a) … Википедия

    Маятник - устройство, которое, колеблясь, упорядочивает движение механизма часов. Пружинный маятник. Регулирующая деталь часов, состоящая из маятника и его пружины. До изобретения маятниковой пружины, часы приводились в движение одним маятником.… … Словарь часов

    МАЯТНИК - (1) математический (или простой) (рис. 6) тело небольших размеров, свободно подвешенное к неподвижной точке на нерастяжимой нити (или стержне), масса которой пренебрежимо мала по сравнению с массой тела, совершающего гармонические (см.)… … Большая политехническая энциклопедия

    Твёрдое тело, совершающее под действием прилож. сил колебания ок. неподвижной точки или оси. Математическим М. наз. материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающая под действием силы… … Большой энциклопедический политехнический словарь

    Часы с пружинным маятником - пружинный маятник регулирующая часть часов, также используется в часах средних и маленьких размеров (переносные часы, настольные, и т.д.) … Словарь часов - маленькая спиральная пружина, прикрепленная концами к маятнику и его молоточку. Пружинный маятник регулирует часы, точность которых частично зависит от качества маятниковой пружины … Словарь часов

    ГОСТ Р 52334-2005: Гравиразведка. Термины и определения - Терминология ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа: (гравиметрическая) съемка Гравиметрическая съемка, проводимая на суше. Определения термина из разных документов: (гравиметрическая) съемка 95… … Словарь-справочник терминов нормативно-технической документации

Тела под действием силы упругости, потенциальная энергия которой пропорциональна квадрату смещения тела из положения равновесия:

где k – жесткость пружины.

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени. Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия.

Колебания массивного тела, обусловленные действием упругой силы

Анимация

Описание

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.

Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене (рис. 1).

Пружинный маятник

Рис. 1

Прямолинейное движение тела описывают посредством зависимости его координаты от времени:

x = x (t ). (1)

Если известны все силы, действующие на рассматриваемое тело, то эту зависимость можно установить при помощи второго закона Ньютона:

md 2 x /dt 2 = S F , (2)

где m - масса тела.

Правая часть уравнения (2) есть сумма проекций на ось x всех действующих на тело сил.

В рассматриваемом случае главную роль играет упругая сила, которая является консервативной и может быть представлена в виде:

F (x ) = - dU (x )/dx , (3)

где U = U (x ) - потенциальная энергия деформированной пружины.

Пусть x есть удлинение пружины. Экспериментально установлено, что при малых значениях относительного удлинения пружины, т.е. при условии, что:

Ѕ x Ѕ << l ,

где l - длина недеформированной пружины.

Приближенно справедлива зависимость:

U (x ) = k x 2 /2, (4)

где коэффициент k называют жесткостью пружины.

Из этой формулы вытекает следующее выражение для упругой силы:

F (x ) = - kx . (5)

Эту зависимость называют законом Гука.

Кроме силы упругости на движущееся по плоскости тело может действовать сила трения, которая удовлетворительно описывается эмпирической формулой:

F тр = - r dx /dt , (6)

где r - коэффициент трения.

С учетом формул (5) и (6) уравнение (2) можно записать так:

md 2 x /dt 2 + rdx /dt + kx = F (t ), (7)

где F (t ) - внешная сила.

Если на тело действует только сила Гука (5), то свободные колебания тела будут гармоническими. Такое тело называют гармоническим пружинным маятником.

Второй закон Ньютона в этом случае приводит к уравнению:

d 2 x /dt 2 + w 0 2 x = 0, (8)

w 0 = sqrt (k /m ) (9)

Частота колебаний.

Общее решение уравнения (8) имеет вид:

x (t ) = A cos (w 0 t + a ), (10)

где амплитуда A и начальная фаза a определяются начальными условиями.

Когда на рассматриваемое тело действует только сила упругости (5), его полная механическая энергия не изменяется с течением времени:

mv 2 / 2 + k x 2 /2 = const . (11)

Это утверждение составляет содержание закона сохранения энергии гармонического пружинного маятника.

Пусть на массивное тело кроме упругой силы, возвращающей его в положение равновесия, действует сила трения. В этом случае возбужденные в некоторый момент времени свободные колебания тела будут затухать с течением времени и тело будет стремиться к положению равновесия.

В этом второй закон Ньютона (7) можно записать так:

m d 2 x /dt 2 + rdx /dt + kx = 0, (12)

где m - масса тела.

Общее решение уравнения (12) имеет вид:

x(t) = a exp(- b t )cos (w t + a ), (13)

w = sqrt(w o 2 - b 2 ) (14)

Частота колебаний,

b = r / 2 m (15)

Коэффициент затухания колебаний, амплитуда a и начальная фаза a определяются начальными условиями. Функция (13) описывает так называемые затухающие колебания.

Полная механическая энергия пружинного маятника, т.е. сумма его кинетической и потенциальной энергий

E = m v 2 /2 + kx 2 / 2 (16)

изменяется с течением времени по закону:

dE / dt = P , (17)

где P = - rv 2 - мощность силы трения, т.е. энергия, переходящая в тепло за единицу времени.

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от 1 до 15);

Время деградации (log td от -3 до 3);

Время оптимального проявления (log tk от -3 до -2).

Поделиться