Реакции sn1, sn2 и sni. Реакции нуклеофильного замещения Присоединение бисульфита натрия

Введение

Нуклеофильные реакции

Нуклеофильной называется реакция, в которой молекула органического вещества подвергается действию нуклеофильного реагента.

Нуклеофильные ("любящие ядро") реагенты, или нуклеофилы - это частицы (анионы или молекулы), имеющие неподеленную пару электронов на внешнем электронном уровне.

Примеры нуклеофильных частиц:

OH, Cl, Br, CN, H3O, CH3OH, NH3.

Строение некоторых нуклеофильных реагентов

Благодаря подвижности π-электронов, нуклеофильными свойствами обладают также молекулы, содержащие π-связи:

CH3=CH3, CH3=CH–CH=CH3, C6H6 ит. п.

(Между прочим, это объясняет, почему этилен CH3=CH3 и бензол C6H6, имея неполярные углерод-углеродные связи, вступают в ионные реакции с электрофильными реагентами).

1. Примеры нуклеофильных реакций

Нуклеофильное замещение:

Механизм нуклеофильного замещения обозначается символом SN (по первым буквам английских терминов: S – substitution [замещение], N – nucleophile [нуклеофил]).

Нуклеофильное присоединение:

Обозначение механизма - AdN (Ad – addition [присоединение]).

2. Мономолекулярное нуклеофильное замещение и отщепление

Нуклеофильное замещение при насыщенном атоме углерода - это тот тип органических реакций, механизмы которого изучались наиболее подробно. Возможность широкого, варьирования структуры реагентов, одновременного исследования кинетических и стереохимических закономерностей, удобство экспе риментального измерения констант скорости в разнообразных-растворителях - все это сделало реакции нуклеофильного замещения удобным модельным процессом для установления общих закономерностей, связывающих строение органических соеди-: нений с их реакционной способностью. Не случайно, что именно при изучении этих реакций были сформулированы многие общие концепции, ставшие основой теоретической органической химии. Следует иметь в виду, что понятия, которые будут формулиро ваться и анализироваться в последующих двух главах, имеют общее значение и могут быть использованы для описания реакционной способности органических соединений и в других типах органических процессов. Закономерности, характеризующие; реакции нуклеофильного замещения, в значительной степени могут быть перенесены и на другие нуклеофильные процессы:реакции отщепления, замещения в ароматическом ряду, присоединения по кратным связям и многие другие.

Наше внимание будет сосредоточено на двух основных проблемах. Во-первых, мы постараемся понять, каким образом механизм реакции зависит от строения реагирующих соединений и условий ее проведения. Во-вторых, мы должны научиться предсказывать, каким образом изменяется реакционная способность при изменении строения реагентов и условий проведения реакции!Как мы увидим, эти зависимости могут быть совершенно различными для реакций, идущих по разным механизмам. Это может приводить не только к качественно различному влиянию изменения структурных факторов на скорость процесса, но и к полному изменению его направления. Далее нами будет показано, как можно закономерности, рассмотренные в этой и следующей главах, использовать для описания других процессов.

3.ОБЩИЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМАХ РЕАКЦИЙ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ

В общем виде реакцию нуклеофильного замещения можно представить следующей схемой: R -Xm + Yn → R -Yn +1+ Xm -1

В качестве нуклеофильного агента Y может выступать как анион, так и нейтральная молекула, обладающая хотя бы одной неподеленной парой электронов (т. е. основание Льюиса), например:

Y = H3O, ROH, H3S, RSH, NH3, NR., OH", OR", SH~, SIT, Hal", CN~, SCN-, NO2, RCOCT. RC=-CHR и т д.

Замещаемая группа X (называемая уходящей группой) обычно обладает высокой электроотрицательностыо и может уходить как в виде аниона, так и в виде незаряженной молекулы, отщепляясь с электронами нарушающейся связи:

Х=На1, ОН, OR,

OSO2R, OCOR, NR3, SR2 и т. д.

Следует иметь в виду, что в большинстве случаев реакции нуклеофильного замещения сопровождаются конкурирующими с ними реакциями нуклеофильного отщепления, так как нуклео-фильиый реагент может взаимодействовать не только с положительно заряженным атомом углерода, но и с атомом водорода, находящимся в положении, отщепляя его в виде протона. В связи с этим многие аспекты реакций замещения и отщепления будут рассматриваться параллельно.

Реакции нуклеофильного замещения обозначаются как Sn , а отщепления - En .

Как мы увидим, реакция замещения при С может осуществляться как диссоциативный или как синхронный процесс. В первом случае реакция начинается с мономолекулярной диссоциации по связи С-X с образованием карбкатиона, который на второй стадии взаимодействует с нуклеофильным реагентом.

Во втором случае образование связи с нуклеофильным реагентом и разрыв связи с уходящей группой осуществляются одновременно, и процесс идет в одну стадию:

RX + Y- -- строения, и замещение идет через переходное состояние, анало-i гичное имеющему место в случае синхронного процесса. В реакциях в растворе двухстадийиый accoциативный механизм не осуществляется. О том, что реакции нуклеофильного замещения действительно могут осуществляться по двум различным механизмам, свидетельствуют как стереохимические, так и кинетические данные.

4.Стереохимическое течение реакций нуклеофильного замещения.

При исследовании реакций нуклеофильного замещения y асимметрического атома углерода было показано, что в зависимости от строения исходных реагентов и условий проведения реакции стереохимическое течение реакции может быть различным. Так, при проведении следующего цикла реакций оптическая активность практически полностью сохраняется, но знак вращения изменяется на противоположный.

На первой и третьей стадиях реакции связи асимметрического атома углерода не затрагиваются и, следовательно, eго конфигурация остается неизменной. Отсюда следует, что вторая стадия - замещение п-толуолсульфонатной группы на ацетат- анион - происходит с полным обращением конфигурации у акционного центра (вальденовское обращение).

Аналогичные выводы были сделаны при сравнении скоростей рацемизации и обмена галогена в оптически активных галогенпроизводных (поскольку исходное и конечное соединение идентичны, для изучения скорости процесса использовали радиоактивные галоген-ионы).

Это было показано методом меченых атомов.

Если предположить, что каждый акт обмена сопровождается обращением конфигурации, то при прохождении реакции на 50 % должен образовываться полностью рацемизованный продукт, т. е. скорость обмена должна быть в два раза меньше скорости рацемизации. Экспериментальные данные полностью согласуются с этим предположением. Таким образом, обмен иода в 2-иодоктане идет с полным обращением конфигурации.

В то же время многие реакции нуклеофильного замещения идут с полной потерей оптической активности при каждом акте реакции. Так, реакция сольволиза оптически активного а-хлорбензола в 80%-м водном растворе ацетона сопровождается 97%-й рацемизацией:

Кинетический характер реакций нуклеофильного замещения

Наиболее часто реакции нуклеофильного замещения описываются одним из двух кинетических уравнений.

Реакция может описываться уравнением первого порядка. этом случае скорость процесса не зависит ни от концентрации, ни от природы нуклеофила.

Такое кинетическое уравнение свидетельствует о том, что" нуклеофил не принимает участия в скоростьопределяющей стадии процесса и предшествующих ей предравновесных стадиях. В то же время изменение соотношения образующихся продуктов при использовании смесей нуклеофилов и при варьировании их концентраций является доказательством того, что нуклеофил участвует в реакции на быстрой стадии, следующей за скорость-определяющей.

Во втором случае реакция имеет суммарный второй порядок и первый порядок по субстрату, так и по нуклеофилу.

Для этих реакций характерна высокая зависимость скорости процесса от природы нуклеофила.

5. S N 1 и S N 2 реакции.

Основополагающий вклад в изучение реакций замещения у sp 3-гибридизованного атома углерода внес Ингольд. Классическим примером реакции нуклеофильного замещения является превращение алкилгалогенида в спирт:

R-Cl + HO- --> R-OH + Cl-

При изучении кинетики реакций такого типа было установлено, что они могут протекать по двум механизмам (мономолекулярное и бимолекулярное замещение), которым отвечают кинетические зависимости:

V1=k’ (S N 1)

V2= k (S N 2)

Обозначение реакций (S N 1) и (S N 2) было также предложено Ингольдом и расшифровывается, соответственно, как нуклеофильное замещение мономолекулярное и бимолекулярное (от англ. Substitution nucleophilic ).

МОНОМОЛЕКУЛЯРНОЕ НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ (S N 1)

БИМОЛЕКУЛЯРНОЕ НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ (S N 2)

Предполагается, что реакция протекает по следующей схеме:

Если в исходном соединении существовала какая-нибудь оптическая конфигурация (D -, L -), то в результате реакции происходит ее обращение (L -, D -).

В реакции этого типа преимущественно вступают пространственно незатрудненные первичныеалкилгалогениды, при отщеплении уходящей группы от которых не образуется стабилизированного карбкатиона.

6. ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА РЕАКЦИИ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ У НАСЫЩЕННОГО АТОМА УГЛЕРОДА

(S N 1)

(S N 2)

Строение субстрата

Реакционная способность падает в ряду:

Бензильный, аллильный > третичный > вторичный > первичный

Реакционная способность растет в ряду:

Бензильный, аллильный < третичный < вторичный < первичный

Вступающая группа

Практически нет влияния

Чем больше нуклеофильность, тем вероятнее протекание реакции

Уходящая группа

Чем ниже энергия связи, тем легче протекает реакция

Замещение затрудняется с увеличением нуклеофильности (основности) уходящей группы

Стерические факторы

Увеличение числа алкильных заместителей и электронодонорных групп у нуклеофильного центра способствует протеканию реакции.

Препятствуют атаке нуклеофильного центра и затрудняют реакцию

Влияние растворителя

Реакции способствуют протонные полярные растворители

Влияние растворителя сказывается значительно меньше, но реакцию затрудняют растворители, сольватирующие нуклеофил. В целом, лучше протекают с апротонными полярными растворителя.

Концентрация нуклеофила

На скорость реакции не влияет

Скорость реакции пропорциональна концентрации нуклеофила

7.Применение реакций нуклеофильного замещения

При помощи этих реакций нуклеофильного замещения может быть замещено большое количество различных групп. Баннетт и Цейлер дали следующий приблизительный порядок легкости замещения групп: _ F> -N02 > -Cl, -Br, - J > -OS02R > - NRt> - OAr > -- OR > - SR, SAr > - S02 R > - NR2.

Значительно менее удовлетворительное положение в отношении свободно-радикального и нуклеофильного замещения. В случаях свободно-радикального замещения доказано существование п- и сг-комплексов, они, по-видимому, участвуют в механизме замещения в ароматических соединениях. Однако отсутствуют пока определенные данные о существовании и стойкости этих промежуточных соединений и сравнительно мало можно сказать о деталях интимного механизма свободно-радикального замещения. В случаях нуклеофильного замещения положение еще менее удовлетворительно, поскольку дело касается замещения «неактивированных» ароматических соединений. В, настоящее время невозможно дать достаточно обоснованного объяснения замещениям этого типа.

В присутствии галоидов или подобных им электроотрицательных заместителей в кольце становится возможной вся область реакций нуклеофильного замещения, которые не идут с самими исходными углеводородами. Эти реакции замещения распадаются, естественно, на два различных класса: 1) класс, включающий замещение «иеактивированных», и 2) класс реакций, в которых замещению подвергается «активированный» заместитель.

Реакции замещения ароматических углеводородов удобно классифицировать с точки зрения электронных представлений о типах замещения. Так, например, промежуточные соединения типа R+ с недостатками электронов стремятся к центрам с высокой плотностью электронов в. молекулах, с которыми они реагируют. Такие промежуточные соединения называются электрофильными (электронно-акцептерными), и реакции замещения, в которых участвуют такие промежуточные соединения, обозначаются как реакции электрофильного заещенияhttp://www.anchemistry.ru/ref/8lektrofil5nogo_zame4eni9.html. Подобным же образом промежуточные соединения типа R~: стремятся к реакционным центрам молекулы с низкой плотностью электронов и называются нуклеофильными. Реакции замещения, включающие участие таких промежуточных соединений, известны как реакции нуклеофильного замещения. Промежуточные соединения в виде свободных радикалов вследствие их электронейтральности мало подвержены влиянию центров большой и малой плотности электронов. Замещения, включающие участие промежуточных соединений в виде свободных радикалов, называются реакциями свободно-радикального замещения.

Из реакций нуклеофильного замещения можно отметить реакции пиридина с амидом натрия и с сухим КОН при 250-300°С (реакции А.Е. Чичибабина):

Реакции замещения в ароматических углеводородах элоктрофиль-ными группами и свободными радикалами рассматривались в предыдущих разделах. Настоящий раздел посвящен обзору нуклеофильного замещения.

Актуальность широко проводимых в Институте химии АН ТадяССР исследований по изучению тиаинданов обусловлена наличием последних в нефтях таджикской депрессии - самой сернистой и смолистой нефти страны. Основные результаты этих работ содержатся в докладе к.х.н. И.И.Насырова и члена-корреспондента АН ТадхССР И.Нуаанова. Ими не только подробно изучены многочисленные извращения I-тиаинданов и их производных, реакции электрофильного, радикального и нуклеофильного замещения, во также синтезированы вещества, обладающие пестицид-шши свойствами, красители, мономеры, стабилизаторы синтетических волокон и т.д.

Нортон относит реакцию замещения водорода металлом к реакциямэлектрофильного замещения, основываясь на убеждении (признанном в настоящее время неправильным), что атакующим реагентом является катион щелочного металла, а карбанион играет только второстепенную роль акцептора протонов. С другой стороны, основываясь на расположении пары электронов углерод-водородной связи, которая разрывается, и связи углерод - металл (ионной), которая образуется, реакция замещения водорода металлом может быть определена как электрофильное замещение. По той же причине гидролиз торе/я-бутилхлорида определяют как реакцию нуклеофильного замещения изомеризации углеводородов проявляется большое число закономерностей, связанных с особенностями реакций нуклеофильного замещения у насыщенного углеродного атома. Так, при относительно высоких скоростях реакции наблюдается стереоспецифичность и стереонаправленность перегруппировок, что указывает на механизм псевдо-5л2-замещения, предполагающий сохранение тетраэдрической структуры карбоний-иона с атакой мигрирующей группы со стороны, противоположной уходящей группе (гидрид-ион).

Заключение

Итак, мы рассмотрели реакции нуклеофильного замещения в тетраэдрическом атоме углерода, рассмотрели два возможных механизма данного процесса, показали, какие факторы влияют на него, а именно: строение субстрата, особенности строения встпающей и уходящей групп, природа растворителя, различные стерические факторы. И, наконец, указали возможные варианты применения реакций данного типа.

Список литературы

1. Т.Беккер. Механизмы электронных процессов в органических соединениях.-М,1969.-687 с.

2. Нейланд О. Органическая химия: учеб. Для хим. спец вузов.- ,М.: Высш. шк., 1990.-751 с.

3. Р. Моррисон, Р. Бойд. Органическая химия.-М.: Мир, 1974.- 1132 с.

Основополагающий вклад в изучение реакций замещения у sp3-гибридизованного атома углерода внес Ингольд. Классическим примером реакции нуклеофильного замещения является превращение алкилгалогенида в спирт:

R-Cl + HO- --> R-OH + Cl-

При изучении кинетики реакций такого типа было установлено, что они могут протекать по двум механизмам (мономолекулярное и бимолекулярное замещение), которым отвечают кинетические зависимости:

V 1 =k" (SN1)

V 2 = k (SN2)

Обозначение реакций (SN 1) и (SN 2) было также предложено Ингольдом и расшифровывается, соответственно, как нуклеофильное замещение мономолекулярное и бимолекулярное (от англ. Substitution nucleophilic).

Мономолекулярное нуклеофильное замещение (SN1)

Бимолекулярное нуклеофильное замещение (SN2)

Предполагается, что реакция протекает по следующей схеме:

Если в исходном соединении существовала какая-нибудь оптическая конфигурация (D-, L-), то в результате реакции происходит ее обращение (L-, D-).

В реакции этого типа преимущественно вступают пространственно незатрудненные первичныеалкилгалогениды, при отщеплении уходящей группы от которых не образуется стабилизированного карбкатиона.

Механизм реакции SN 1 или реакции мономолекулярного нуклеофильного замещения (англ. substitution nucleophilic unimolecular) включает следующие стадии:

1. Ионизация субстрата с образованием карбкатиона (медленная стадия):

2. Нуклеофильная атака карбкатиона (быстрая стадия):

или (если в качестве нуклеофила выступает нейтральная частица):

R+ + Y?Z > R?Y+?Z

3. Отщепление катиона (быстрая стадия):

R?Y+?Z > R?Y + Z+

Примером реакции SN1 является гидролиз трет-бутилбромида:


Условный энергетический профиль реакции SN1

Скорость реакции SN 1 (в упрощённом виде) не зависит от концентрации нуклеофила и прямо пропорциональна концентрации субстрата:

Скорость реакции = k Ч

Так как в процессе реакции образуется карбкатион, его атака (в идеальных условиях без учёта фактора влияния заместителей) нуклеофилом может происходить с обеих сторон, что приводит к рацемизации образующегося продукта.

Важно иметь в виду, что SN1 механизм реализуется только в случае относительной устойчивости промежуточного карбкатиона, поэтому по такому пути, обычно, реагируют только третичные ((R)3C-X) и вторичные ((R)2CH-X) алкилпроизводные.

Реакции SN2

Механизм реакции SN 2 или реакции бимолекулярного нуклеофильного замещения происходит в одну стадию, без промежуточного образования интермедиата. При этом атака нуклеофила и отщепление уходящей группы происходит одновременно:

R?X + Y? > ? > R?Y + X?

Примером реакции SN2 является гидролиз этилбромида:


Условный энергетический профиль реакции мономолекулярного нуклеофильного замещения представлен на диаграмме.

Скорость реакции SN2 зависит как от концентрации нуклеофила, так и концентрации субстрата:

Скорость реакции = k Ч Ч [Y]

Так как в процессе реакции атака нуклеофилом может происходить только с одной стороны, результатом реакции является стехиометрическая инверсия образующегося продукта.

Ещё в 1895 году году этот эффект обнаружил латышский химик Пауль Вальден («обращение Вальдена»), однако он не смог его объяснить. В 1935 году Хьюз исследую реакцию оптически активного 2-йодоктана с йодид-ионом обнаружил, что реакция имеет общий второй кинетический порядок и первый по каждому из реагентов, а также что скорость рацемизации в два раза выше скорости внедрения йода в молекулу йодоктана. Так было сформулировано стехиометрическое SN 2 правило:

В реакциях бимолекулярного нуклеофильного замещения атакующий нуклеофил стехиометрически инвертирует молекулу, в которой он замещает уходящую группу.

Сравнение реакций SN1 и SN2

Сравнительный фактор

Скорость реакции

k Ч Ч [Y]

Стереохимический результат

рацемизация

инверсия

Предпочтительный растворитель

полярный протонный

полярный апротонный

Влияние структуры субстрата на скорость реакции

реакция не идёт

очень хорошо

реакция не идёт

реакция идёт

реакция идёт

очень хорошо

реакция не идёт

реакция идёт

С 6 H 5 -CH 2 -X

реакция идёт

реакция не идёт

Реакции смешанного типа SN1 - SN2

Не для всех реакций можно чётко определить механизм, по которому они протекают, так как чистый SN 1 или SN 2 являются всего лишь идеальными (предельными) модельными случаями. Следует помнить, что один и тот же субстрат может реагировать с одним и тем же нуклеофилом, в зависимости от условий реакции и растворителя, как по механизму SN 1 , так и SN 2 .

Например, скорость гидролиза 2-бромпропана описывается с учётом смешанного механизма его протекания:

CH3?CHBr?CH3 + HO? > CH3?CHOH?CH3 + Br?

Скорость реакции = k1 Ч + k2 Ч Ч

Часто смешанный механизм провоцирует применение амбидентных нуклеофилов, то есть нуклеофилов, имеющих не менее двух атомов - доноров электронных пар (например: NO2?, CN?, NCO?, SO32? и пр.)

Если в субстрате имеется заместитель, находящийся рядом с атакуемым атомом и несущий свободную электронную пару, он может существенно увеличить скорость реакции нулкеофильного замещения и повлиять на её механизм (сохранение конфигурации). В этом случае говорят об анхимерном содействии соседней группы (например: COO?, COOR, OCOR, O?, OR, NH2, NHR, NR2 и пр.)

Примером анхимерного содействия может служить гидролиз 2-бромпропионата:

Несмотря на формальный (с точки зрения одностадийности) механизм SN2, образующийся в ходе реакции продукт имеет ту же оптическую конфигурацию, что и исходный.

Общая схема реакции:

Нуклеофил отдает субстрату свою пару электронов, за счет которой образуется новая связь, а галоген уходит со своей парой электронов в виде галогенид-аниона. При этом происходит алкилирование нуклеофила.

Для нуклеофильного замещения у атома углерода в состоянии sp 3 -гибридизации установлено два основных механизма: бимолекулярное нуклеофильное замещение (S N 2 ) и мономолекуляное нуклеофильное замещение (S N 1 ).

Бимолекулярное нуклеофильное замещение.
Бимолекулярное нуклеофильное замещение - это синхронный процесс, который протекает в одну стадию. Разрыв старой и образование новой связи происходят одновременно. Нуклеофил атакует субстрат со стороны, противоположной уходящей группе (с тыла), и постепенно вытесняет ее из молекулы:

Y: + R-Hal ® ® Y-R + Hal -

переходное
состояние

S N 2-реакции имеют следующие основные признаки.

    1. Кинетический признак

Скорость реакции зависит от концентрации и субстрата, и нуклеофила. Реакция имеет второй общий порядок (первый по субстрату и первый по нуклеофилу) и описывается кинетическим уравнением:

  1. v=k[Y]
    1. Стереохимический признак

Если нуклеофильное замещение происходит у асимметрического атома углерода, то имеет место обращение конфигурации, так как в переходном состоянии три нереагирующие группы и центральный атом углерода находятся в одной плоскости, а входящая и уходящая группы расположены на одной прямой, перпендикулярной этой плоскости. В результате структура выворачивается, как зонтик:

Мономолекуляное нуклеофильное замещение.
Мономолекулярное нуклеофильное замещение протекает в две стадии:

На первой стадии под действием растворителя происходит гетеролитический разрыв связи в субстрате, в результате чего образуется карбокатион. Процесс протекает медленно и определяет скорость реакции в целом. На второй стадии карбокатион быстро реагирует с нуклеофилом, давая продукт замещения.

Энергетическая диаграмма процесса имеет вид:

S N 1-реакции имеют следующие основные признаки.

    1. Кинетический признак

Скорость реакции зависит только от концентрации субстрата, поскольку нуклеофил не участвует в лимитирующей стадии процесса. Реакция имеет первый порядок и описывается кинетическим уравнением:

v=k
    1. Cтереохимический признак

Если нуклеофильное замещение происходит у асимметрического атома углерода, то, как правило, образуется рацемическая смесь, так как атака нуклеофилом плоского карбокатиона с обоих сторон равновероятна:

Факторы, влияющие на ход нуклеофильного замещения

Легкость протекания реакции и ее механизм зависят от многих факторов, среди которых можно выделить следующие:

    • строение углеводородного радикала субстрата;
    • природа уходящей группы;
    • сила нуклеофила;
    • природа растворителя.

Влияние строения углеводородного радикала.

Реакционная способность первичных, вторичных и третичных алкилгалогенидов в реакциях нуклеофильного замещения различна, причем порядок реакционной способности зависит от механизма реакции.

Скорость реакций, протекающих по механизму S N 1, зависит от стабильности карбокатиона, образующегося на первой стадии реакции. Таким образом, реакционная способность алкилгалогенидов в реакциях S N 1 возрастает в ряду:

который соответствует ряду стабильности карбокатионов:

Успех реакции S N 2 определяется эффективностью атаки нуклеофила на положительно заряженный реакционный центр субстрата. Поэтому электронодонорные радикалы R, понижая положительный заряд на реакционном центре, замедляет нуклеофильную атаку. В то же время увеличению объема R затрудняет подход нуклеофила к реакционному центру. Совместное действие индуктивного и объемного эффектов определяет ряд реакционных способностей субстратов в реакциях нуклеофильного замещения:

Высокой реакционной способностью независимо от механизма реакции обладают аллил- и бензилгалогениды. В процессе S N 1 они дают карбокатионы, стабилизированные засчет сопряжения:

Бензил-катион

Легкость, с которой аллил- и бензилгалогениды вступают в S N 2-реакции объясняют участием кратных связей в стабилизации переходного состояния.

Влияние природы уходящей группы.

Реакционная способность алкилгалоненидов зависит от прочности связи углерод - галоген, которая уменьшается в ряду:

C-F > C-Cl > C-Br > C-I.

Не менее важно, чтобы уходящая группа была термодинамически стабильна. (Она должна быть более устойчива, чем атакующий субстрат нуклеофил). Хорошими (относительно устойчивыми) уходящими группами являются слабые основания. Галогенид-анионы - хорошие уходящие группы. Их относительная стабильность возрастает по мере уменьшения их основности в ряду:

F - < Cl - < Br - < I -

Параллельно увеличивается и реакционная способность алкилгалогенидов независимо от того, по какому из двух механизмов протекает реакция:

RF < RCl < RBr < RI

Влияние природы нуклеофила.

Нулеофильность - это способность частицы взаимодействовать с атомом углерода, несущим целый или частичный положительный заряд. Нуклеофильность является кинетической характеристикой и определяется константами скоростей соответствующих реакций.

Нуклеофилы, как и основания, могут быть сильными и слабыми. Единой шкалы нуклеофильности не существует, так как относительная сила нуклеофила может изменяться в зависимости от природы субстрата и растворителя. Однако можно выделить следующие основные закономерности.

1) Отрицательно заряженные нуклеофилы сильнее, чем нейтральные молекулы (сопряженные им кислоты):

OH - > H 2 O; RO - > ROH; NH 2 - > NH 3

2) Для элементов одного периода с ростом электроотрицательности атома нуклеофильность уменьшается:

NH 2 - > OH - > F -

R 3 C - > RNH 2 - > RO - > F -

3) Электронодонорные заместители увеличивают, электроноакцепторные - уменьшают нуклеофильность. Например, для кислородсодержащих нуклеофилов установлен следующий ряд реакционной способности:

RO - > OH - > ArO - > RCOO -

В рассмотренных примерах порядок нуклеофильности реагентов совпадает с порядком их основности и объясняется теми же причинами. Однако сила нуклеофила определяется не только его основностью, но иполяризуемостью .

4) Для элементов одной подгруппы с возрастанием заряда ядра нуклеофильность увеличивается, несмотря на уменьшение основности:

RS --

I - - - -

Рост нуклеофильности связан с увеличением поляризуемости атомов и ионов по мере увеличения их радиуса. Чем выше поляризуемость нуклеофила, тем легче деформируется его электронное облако и тем в большей степени он способен передать электронную плотность на субстрат.

Такой порядок нуклеофильности может быть объяснен также с позиций принципа ЖМКО. Основность по Бренстеду проявляется во взаимодействии с жесткой кислотой Н + , в то время как нуклеофильность проявляется во взаимодействии с более мягким кислотным центром - атомом углерода, для которого предпочтительным будет взаимодействие с мягкими основаниями Льюиса - RS - и I - .

Кроме того, относительная сила нуклеофилов зависит от природы растворителя. Чем меньше размер аниона, тем лучше он сольватируется полярными протонными растворителями (т.е. растворителями, способными образовывать с анионом водородные связи), что снижает его реакционную способность. При замене растворителя порядок реакционной способности нуклеофилов может меняться на противоположный.

В соответствии с механизмами S N 2 и S N 1 природа нуклеофила оказывает влияние на ход S N 2-реакции, так как нуклеофил участвует в лимитирующей (и единственной) стадии процесса, и не влияет на скорость реакций, протекающих по механизму S N 1, лимитирующая стадия которых протекает без участия нуклеофила.

Влияние природы растворителя

Растворитель влияет на скорость и механизм реакций нуклеофильного замещения.

Протеканию реакции по механизму S N 1 способствуют сильноионизирующие растворители. К ним относятся полярные протонные растворители (вода, спирты, карбоновые кислоты), так как они хорошо сольватируют ионные интермедиаты: отрицательно заряженную уходящую группу - за счет водородных связей, карбокатион - за счет свободных пар электронов.

Влияние растворителя на S N 2-реакции проявляется в меньшей степени и зависит от распределения зарядов в исходном и переходном состояниях. Как правило, их скорость уменьшается с ростом полярности растворителя и увеличивается при переходе от протонных растворителей к апротонным (диметилформамид, диметилсульфоксид, ацетонитрил). В апротонных растворителях, которые не способны к образованию водородных связей, нуклеофил (а это, как правило, анион) в меньшей степени сольватирован и, следовательно, обладает большей силой, что важно для S N 2-реакции.

Таким образом, протеканию реакций по механизму S N 2 способствуют:

  • субстрат с углеводородным радикалом малого объема (первичным);
  • апротонный растворитель;
  • сильный нуклеофил.

Реализации механизма S N 1 способствуют:

  • субстрат с углеводородным радикалом разветвленного строения (третичным);
  • полярный протонный растворитель;
  • слабый нуклеофил.

По легкости замещения галогена независимо от механизма реакции галогенпроизводные располагаются в следующий ряд:

аллил- и бензилгалогениды > алкилгалогениды > винил- и арилгалогениды

Галогенпроизводные, содержащие связь (винил- и арилгалогениды), обладают очень низкой реакционной способностью. Реакция протекает по иному механизму. Малую подвижность галогена в винил- и арилгалогенидах объясняют увеличением прочности связи C-Hal за счет сопряжения пары электронов галогена с электронами p -связей:

Примеры реакций нуклеофильного замещения

Реакции нуклеофильного замещения галогена широко используются в органическом синтезе. С их помощью можно заменять галоген на другие функциональные группы или углеводородные радикалы и получать из галогенпроизводных любые классы органических соединений.

Примеры синтетического использования галогенпроизводных алифатических углеводородов приведены в таблице.

Таблица 7. S N -реакции галогенпроизводных
Субстрат + нуклефил ® продукт + уходящая группа
Получение спиртов
R-Hal + OH - (H 2 O) ® R-OH + Hal - (HHal)
CH 3 Br + NaOH CH 3 OH + NaBr
(CH 3) 3 CCl + H 2 O ® (CH 3) 3 COH + HCl
CH 2 =CH-CH 2 Cl + H 2 O ® CH 2 =CHCH 2 OH+HCl
Получение простых эфиров
R-Hal + R / O - ® R-OR / + Hal -
СH 3 I + CH 3 CH 2 O - Na + ® CH 3 OCH 2 CH 3 + NaI
Получение сложных эфиров
R-Hal + R / COO - ® R / COOR + Hal -
CH 3 CH 2 I + CH 3 COO - Na + ® CH 3 COOCH 2 CH 3 + NaI
Получение тиолов
R-Hal + SH - ® R-SH + Hal -
CH 3 СH 2 Br + NaHS ® CH 3 СH 2 SH + NaBr
Получение сульфидов
R-Hal + R / S - ® R-SR / + Hal -
CH 3 СH 2 Br CH 3 СH 2 S - Na + ® (CH 3 СH 2) 2 S + NaBr
Получение аминов и аммониевых солей
R-Hal + NH 2 - ® RNH 2 + Hal -
R-Hal + R / 3 N ® R R / 3 N + Hal -
Получение нитрилов
R-Hal + Сє N - ® R- Сє N + Hal - (S N 2)
CH 3 СH 2 Br + NaCN ® CH 3 СH 2 CN + NaBr
Получение нитросоединений
R-Hal NO 2 - ® R-NO 2 + Hal - (S N 2)
CH 3 CH 2 I AgNO 2 ® CH 3 CH 2 NO 2 + AgI
Получение галогенпроизводных
R-Hal + I - ® R-I + Hal - (S N 2)
CH 3 Cl + NaI ® СH 3 I + NaCl

Винил- и арилгалогениды инертны по отношению к нуклеофильным реагентам. Замещения галогена в галогенбензолах возможно только в очень жестких условиях, например:

Введение электроноакцепторных заместителей в орто - и пара -положения к галогену активизируют галогенарены в S N -реакциях:

Аналогично 2,4-динитрофторбензол взаимодействует с аминогруппами аминокислот и пептидов, что используется для установления их аминокислотного состава:

Нуклеофильные реакции – гетеролитические реакции органических соединений с нуклеофильными реагентами. К нуклеофилам относятся анионы и молекулы (органические и неорганические), которые в ходе реакции расходуют свою неподеленную пару электронов на образование новой связи.

На скорость и механизм реакции S N определяющее влияние оказывают:

    Нуклеофильная способность (нуклеофильность) реагента Y

    Природа субстрата

    Нуклеофугная способность уходящей группы

    Условия реакции

Нуклеофильность, в отличии от основности, величина кинетическая, а не термодинамическая, т.е. количественной мерой нуклеофильности является константа скорости реакции, а не константа равновесия.

Есть 2 предельных случая S N:

Sn. Квантово-химические представления

S N можно представить как взаимодействие ВЗМО нуклеофила и НСМО субстрата. Энергия взаимодействия:

,– заряды на реакционном центре нуклеофила Y и атоме углерода субстрата, по которому осуществляется атака.

– расстояние между реагирующими центрами.

– коэффициент атомной орбитали атома, принадлежащего нуклеофилу, который является нуклеофильным центром, т.е. характеризует вклад атома нуклеофила в ВЗМО Y.

– характеризует вклад атома углерода (электрофильный центр) в НСМО субстрата.

– изменение резонансного интеграла, характеризующий эффективность перекрывания ВЗМО Y и НСМО субстрата.

,– энергии ВЗМО Y и НСМО субстрата.

В случае S N 1, когда осуществляется взаимодействие катиона и аниона и реакционный центр несет положительный заряд, определяющая – кулоновская составляющая и относительная реакционная способность нуклеофилов увеличиваться симбатно их основности. В этом случае говорят, что реакция идет при зарядовом контроле.

Более сложная ситуация в S N 2. В газовой фазе и апротонных растворителях, где сольватация аниона мала и заряд на нуклеофиле в большей степени локализован, также наблюдается зарядовый контроль. Однако в протонных растворителях (спирты) заряд на нуклеофиле делокализован в результате сольватации. Заряд на реакционном центре также мал. В этом случае роль кулоновского взаимодействия ниже и основной вклад в энергию взаимодействия вносит орбитальная составляющая. Говорят, что реакция идет при орбитальном контроле. Присутствие донора в нуклеофиле увеличивает заряд на реакционном центре, тем самым увеличивается вклад зарядовой составляющей, кроме того введение донорного заместителя приводит к некоторому увеличению энергии ВЗМО нуклеофила и, следовательно, к увеличению орбитальной составляющей. Т.о. введение ЭД в молекулу нуклеофила приводит к увеличению скорости реакции. В ряду галогенов как нуклеофилов кулоновское взаимодействие уменьшается от фтора к йоду, что является следствием уменьшения локализации отрицательного заряда и увеличении расстояния между атомами. В то же время орбитальное взаимодействие увеличивается, т.к. повышается энергия НСМО галогенов (ВЗМО).

В отличии от S Е, где замещению обычно подвергается атом водорода, в S N замещаются функциональные группы (галогены, сульфо-, нитро- и т.д.).

Прежде чем рассмотреть каждый из классов производных кислот в отдельности, полезно дать общую картину их поведения, в рамках которой будет легче рассмотреть довольно многочисленные индивидуальные особенности.

Каждое производное почти всегда получают - непосредственно или косвенным путем - из соответствующей карбоновой кислоты, и его можно превратить вновь в карбоновую кислоту простым гидролизом. Большую роль в химии производных кислот играют превращения их друг в друга и в исходную кислоту. Кроме того, каждый класс имеет свои характерные реакции.

Производные карбоновых кислот, как и сами кислоты, содержат карбонильную группу Эта группа сохраняется в продуктах большинства реакций этих соединений и не претерпевает при этом видимых изменений. Однако само присутствие этой группы в молекуле определяет характерную реакционную способность этих соединений, и этот факт является ключевым для понимания их химии.

Ацильные соединения (карбоновые кислоты и их производные) обычно претерпевают реакции нуклеофильного замещения, в которых группы или замещаются на другие основные группы. Замещение протекает гораздо легче, чем замещение при насыщенном атоме углерода; в действительности многие из этих реакций вообще не происходят в отсутствие карбонильной группы, как, например, замещение на

Для объяснения свойств ацильных соединений необходимо вновь обратиться к строению карбонильной группы. Мы уже встречались с этой группой

при изучении альдегидов и кетонов (разд. 19.1 и 19.9) и знаем, каких реакций можно в общем для нее ожидать.

Углерод карбонильной группы связан с тремя другими атомами -связями; поскольку эти связи используют -орбитали (разд. 2.23), они лежат в плоскости под углом 120° (2,094 рад) друг к другу. Остающаяся -орбиталь атома углерода перекрывается с -орбиталью атома кислорода с образованием -связи; углерод и кислород, таким образом, соединены двойной связью. Часть молекулы, непосредственно примыкающая к атому углерода карбонильной группы, плоская; кислород, углерод карбонильной группы и два связанных с ним атома лежат в одной плоскости

Как электронные, так и пространственные факторы делают карбонильную группу особенно доступной для нуклеофильной атаки по углероду карбонильной группы. Эти факторы следующие: а) тенденция кислорода к получению электронов, даже если при этом на кислороде появляется отрицательный заряд; б) относительная незатрудненность переходного состояния при превращении тригонального реагента в тетраэдрический интер-медиат. Те же факторы делают ацильные соединения доступными для нуклеофильной атаки.

Однако ацильные соединения отличаются от альдегидов и кетонов природой второй стадии реакции. Тетраэдрический интермедиат, получающийся из альдегида или кетона, присоединяет протон, и образуется продукт присоединения. Тетраэдрический интермедиат, образующийся из ацильного соединения, элиминирует группу что приводит снова к тригональному соединению, и результатом реакции является замещение.

Можно понять, почему эти два класса соединений ведут себя различным образом. Легкость, с которой элиминируется группа зависит от ее основности: чем слабее основание, тем легче уходит эта группа. Для хлорангидридов, ангидридов кислот, сложных эфиров и амидов группой являются соответственно следующие: очень слабое основание умеренно слабое основание и сильные основания и Но для того чтобы произошло замещение у альдегидов или кетонов, элиминируемой группой должен быть гидрид-ион или алкил-ион которые, как мы знаем, являются самыми сильными основаниями (отметьте очень низкую кислотность и В результате в реакциях с альдегидами и кетонами вместо элиминирования всегда происходит присоединение.

(см. скан)

(см. скан)

Итак, нуклеофильное замещение в ацильной группе происходит в две стадии с промежуточным образованием тетраэдрического интермедиата. Обычно общая скорость определяется скоростью обеих стадий, но первая стадия более важна.

Скорость первой стадии (образование тетраэдрического интермедиата) определяется теми же факторами, что и реакция присоединения к альдегидам и кетонам (разд. 19.9): ей благоприятствует эффект оттягивания электронов, стабилизующий образующийся отрицательный заряд; ей препятствует наличие объемистых групп, создающих пространственные препятствия в переходном состоянии. Легкость второй стадии зависит от основности уходящей группы

Поделиться