Что такое температура кюри. Ферромагнетики. Основные свойства ферромагнетиков. Магнитный гистерезис. Точка Кюри. Доменная структура. Свободные затухающие электромагнитные колебания

Можно записать как:

где $\overrightarrow{S_1}\overrightarrow{S_2}$ -- спины, электронов, которые взаимодействуют, $I_{ob}$ -- интеграл обменного взаимодействия. При $I_{ob}>0$ энергия взаимодействия минимальна в случае параллельных спинов. Она вызвана взаимодействием магнитного момента электрона (${\overrightarrow{p}}_m$) с магнитным полем (индукция обменного поля ${\overrightarrow{B}}_{ob}$) и определяется формулой:

Собственный магнитный момент электрона (${{\overrightarrow{p}}_m}^0$) связан со спином $\overrightarrow{S}\ $ соотношением:

где $q_e$, m -- заряд и масса электрона. Разделим и умножим правую часть выражение (1) на $\frac{q_e}{m}$, получим:

Положим, что второй электрон находится в магнитном поле, которое создает первый электрон, тогда следует записать:

Суммарная индукция магнитного поля складывается из индукции поля без обменного взаимодействия ($\overrightarrow{B}$) и индукции обменного поля (${\overrightarrow{B}}_{ob}$). Используя известные соотношения:

где $\overrightarrow{J}$ -- вектор намагниченности, $\varkappa $ -- магнитная восприимчивость, $\mu $ -- магнитная проницаемость, ${\mu }_0$ -- магнитная постоянная, $\overrightarrow{H}$ -- напряженность магнитного поля.

Если присутствует обменное взаимодействие, то формулу (10) можно обобщить до:

Пусть величина $\lambda $ -- постоянная обменного взаимодействия, тогда можно считать, что:

Подставим (12) в (11), получим:

Произведем замену:

где ${\varkappa }"$ характеризует восприимчивость с учетом обменного взаимодействия ($\varkappa =\frac{C}{T}$).

При $T > \lambda C$ вещество ведет себя как парамагнетик . Магнитная восприимчивость уменьшается при увеличении температуры. При $T=\lambda C$ в соответствии с (15) ${\varkappa }"\to \infty .$ Этот факт значит, что самые малые магнитные поля вызывают конечную намагниченность. Или иначе, при $T=\lambda C$ возникает спонтанная намагниченность, то есть парамагнетик переходит в ферромагнетик. Более точные теоретические изыскания показывают, что спонтанная намагниченность при $T=\lambda C$ возникает скачком, и при уменьшении температуры возрастает. То есть при $T

Температура Кюри. Закон Кюри -- Вейсса

Для любого ферромагнетика существует температура ($T_k$) при которой области спонтанной намагниченности распадаются и вещество теряет ферромагнитные свойства и становится парамагнетиком. Такая температура называется точкой Кюри (или температурой Кюри). Она для разных ферромагнетиков может существенно различаться. Так для железа $T_{kF_e}=768{\rm{}^\circ\!C}$, для никеля $T_{kN_i}=365{\rm{}^\circ\!C}$.

Магнитная восприимчивость ферромагнетика подчиняется закону Кюри -- Вейсса:

где величина $\lambda C=\theta $ называется температурой Кюри -- Вейсса. Теория показывает, что фазовый переход осуществляется не при температуре Кюри -- Вейсса, а близкой к ней. Иногда не делают различий между температурой Кюри, при которой происходит фазовый переход и температурой Кюри --Вейсса.

Пример 1

Задание: Используя функцию Ланжевена, покажите область спонтанной намагниченности ферромагнетика. Как связана спонтанная намагниченность и температура ферромагнетика?

Из теории Ланжевена можно получить для ферромагнетиков два следующих уравнения:

\ \

где $J_n$ -- намагничивание насыщения, $k$ -- постоянная Больцмана, $b$ -- постоянная Вейсса, $x=\frac{p_m(H+bJ)}{kT}$, $p_m$ -- магнитный момент. Первое уравнение удобно представить кривой Ланжевена ($OAA_0$) (рис.1). Уравнение (1.2) -- прямая СА, которая пересекает вертикальную ось в точке C, ордината которой в точке C равна -$\frac{H}{b}.\ $

Если температура ферромагнетика меньше температуры Кюри для него ($T \[\frac{kTn}{J_nb} В таком случае прямая AC пересечет кривую Ланжевена в точке А, ордината этой точки есть намагниченность ферромагнетика ($J_1$). Если уменьшать напряженность внешнего магнитного поля, то точка C ,будет подниматься к точке О, а точка А перемещаться к точке $A_0.$ Если H=0, то намагниченность равна $J_{0.}$ При температуре ниже точки Кюри ферромагнетик спонтанно намагничен. Энергии теплового движения молекул не достаточно, чтобы нарушить спонтанное намагничивание.

Допустим, что наклон прямой СА больше наклона кривой Ланжевена, то есть $T>T_k$. При наличие внешнего магнитного поля прямая СА займет положение ОD, то есть пересечет кривую Ланжевена только в начале координат, где намагничивание равно нулю. Спонтанное намагничивание отсутствует, намагничивание разрушается тепловым движением.

Пример 2

Задание: Используя функцию Ланжевена, получите закон Кюри -- Вейсса.

Используем рис.1 (Пример 1). Рассмотрим ферромагнетик при температуре $T>T_k.\ $Спонтанное намагничивание отсутствует. Для того чтобы намагнитить вещество, необходимо приложить внешнее магнитное поле. Рассчитаем намагничивание. Прямая АС при этом займет положение СЕ и будет пересекать кривую Ланжевена в точке $A_1$.Ордината точки $A_1$ будет определять намагниченность тела ($J_2$). Ордината ОС, полученная эмпирически равна -$\frac{H}{b}$, она мала, следовательно участок О$A_1$ кривой Ланжевена, так же мал. Значит, участок О$A_1$ можно считать отрезком прямой, и написать:

\ \

если ввести для температуры Кюри выражение:

\[\varkappa =\frac{T_k}{b(Т-T_k)}=\frac{С}{Т-T_k}\ \left(2.6\right),\]

где $С=const.$ Уравнение (2.6) -- закон Кюри -- Вейсса.

существуют сильномагнитные вещества - ферромагнетики - вещества, обладающие спонтанной намагниченностью, т. е. они намагниче­ны даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основ­ного их представителя - железа (от него и идет название «ферромагнетизм») - от­носятся, например, кобальт, никель, гадолиний, их сплавы и соединения.

Ферромагнетики помимо способности сильно намагничиваться обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Если для слабомагнитных веществ зависимость J от Н линейна, то для ферромагнетиков эта зависимость, является довольно сложной. По мере возрастания Н намагниченность J сначала растет быстро, затем медленнее и, наконец, достигается так называемоемагнитное насыщение J нас, уже не зависящее от напряженности поля. Подобный характер зависимости J от Н можно объяснить тем, что по мере увеличения намагничивающего поля увеличивает­ся степень ориентации молекулярных магнитных моментов по полю, однако этот процесс начнет замедляться, когда остается все меньше и меньше неориентированных моментов, и, наконец, когда все моменты будут ориентированы по полю, дальнейшее увеличение J прекращается и наступает магнитное насыщение.

Магнитная индукция B = m 0 (H+J ) в слабых полях растет быстро с ростом H вследствие увеличения J , а в сильных полях, поскольку второе слагаемое постоянно (J=J нас), В растет с увеличением Н по линейному закону.

Существенная особенность ферромагнетиков - не только большие значения m (на­пример, для железа - 5000, для сплава супермаллоя - 800 000!), но и зависимость m от Н . Вначале m растет с увеличением Н, затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (m = B /(m 0 H ) = 1 + J/H, поэтому при J = J нас = const с ростом Н отношение J/H ® 0, m ®1).

Характерная особенность ферромагнетиков состоит также в том, что для них зависимость J от H (а следовательно, и В от Н ) определяется предысторией намагниче­ния ферромагнетика. Это явление получило название магнитного гистерезиса . Если намагнитить ферромагнетик до насыщения, а затем начать умень­шать напряженность Н намагничивающего поля, то, как показывает опыт, умень­шение J. При Н = 0 J отличается от нуля, т. е. в ферромагнетике наблюдается остаточное намагничение J ос. С наличием остаточного намагничения связано существованиепостоянных магнитов. Намагничение обращается в нуль под действием поля Н с, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Н с называется коэрцитивной силой .

При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается, и при Н = –H нас достигается насыщение. Затем фер­ромагнетик можно опять размагнитить и вновь перемагнитить до насыщения

Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой, которая называетсяпетлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, т.е. одному и тому же значению Н соответствует несколько значений J.

Различные ферромагнетики дают разные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысячных до 1-2 А/см) коэрцитивной силой Нс (с узкой петлей гистерезиса) называются мягкими , с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широкой петлей гистерезиса) - жесткими . Величины Нс, J ос и m max определяют применимость фер­ромагнетиков для тех или иных практических целей. Taк, жесткие ферромагнетики (например, углеродистые и вольфрамовые стали) применяются для изготовления постоянных магнитов, а мягкие (например, мягкое железо, сплав железа с нике­лем) - для изготовления сердечников трансформаторов.

Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри , при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не со­провождается поглощением или выделением теплоты, т.е. в точке Кюри происходит фазовый переход II рода (см. § 75).

Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции

Природа ферромагнетизма

Рассматривая магнитные свойства ферромагнетиков, мы не вскрывали физическую природу этого явления.

Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Спонтанное намагничение, однако, находится в кажущемся противоречии с тем, что многие ферромагнитные материалы даже при температурах ниже точки Кюри не намагничены. Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых макроскопических областей - доменов , самопроизвольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных до­менов ориентированы хаотически и компенсируют друг друга, поэтому результиру­ющий магнитный момент ферромагнетика равен нулю и ферромагнетик не намаг­ничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдель­ных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтан­ной намагниченности. Поэтому с ростом Н намагниченность J и магнит­ная индукции В уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение m ферромагнетиков до максимального значения в слабых полях. Эксперименты показали, что зависимость B от H не является такой плавной, а имеет ступенчатый вид. Это свидетельствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.

При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориен­тировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса. Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размаг­ничиванию способствуют также встряхивание и нагревание ферромагнетика. Точка Кюри оказывается той температурой, выше которой происходит разрушение доменной структуры.

Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур . На тщательно отполированную поверхность ферромагнетика наносится водная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преиму­щественно в местах максимальной неоднородности магнитного поля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину можно сфотографировать под микроскопом. Линейные размеры доменов оказались равными 10 –4 - 10 –2 см.

В настоящее время установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами элект­ронов (прямым экспериментальным указанием этого служит опыт Эйнштейна. Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроен­ные внутренние электронные оболочки с нескомпенсированными спинами. В подо­бных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничения. Эти силы, называемые обменными силами, имеют квантовую природу - они обусловлены волновыми свойствами электронов.


Похожая информация.


Ферромагнетики – вещества, которые ниже определенной температуры (точки Кюри) обладают самопроизвольной намагниченностью, в отсутствии внешнего магнитного поля (х>1, при небольших t° обладает самопроизвольной намагниченностью, которая сильно изменяется под действием внешних сил, характерен гистерезис).

Магнитный гистерезис – отставание магнитной индукции от внешнего намагничивающего поля, обусловлено тем, что магнитная индукция зависит от ее предыдущего значения. Следствие необратимости процессов намагничивания.

Домен – макроскопическая область в магнитном кристалле, в которой ориентация вектора, спонтанной однородной намагниченности (при t° ниже точки Кюри) определенным образом повернута или сдвинута относительно направлений соответствующего вектора в соседних доменах.

Точка Кюри – температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества (в ферромагнетиках - магнитной).

У ферромагнетиков в силу большого параметра кристаллической решетки, в состоянии с сильным перекрыванием волновых функций электронов с антипараллельными спинами возникает энергия электростатического отталкивания, которая значительно увеличивает энергию системы в противовес минимуму энергии при выдавливании волновых функций электронов в отдельные состояния при параллельной ориентации спинов.

Свободные затухающие электромагнитные колебания.

Затухающие колебания – колебания, энергия кот. уменьшается с течением времени.

Характеризуются тем, что амплитуда колебаний А явл. убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

–амплитудное значениезарядов в момент времени t = 0

45. Энерегетический колебательный контру. Свободные незатухающие электромагнитные колебания .

Электромагн. колебания – периодически изменяющиеся со временем электрические и магнитные величины в эл.цепи.

Идеальный колебательный контур – электр. цепь, состоит из катушки индуктивностью L и конденсатора емкостью С. (В реальном контуре присутствует сопротивление R). Электрическое сопротивление идеального контура = 0.

Свободные электромагнитные колебания в контуре – периодическое изменение заряда на обмотках конденсатора, силы тока и напр-я в контуре происходит без потребления энергии от внешних источников.

Т.о. возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением ЭДС самоиндукции в катушке, которая обеспечивает это «перезарядку». Колебания происходят по гармонич. закону.

  • 5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
  • 3.1.2. Токи смещения, абсорбции и сквозной проводимости
  • 6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
  • 7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
  • 4.2. Эквивалентные схемы замещения диэлектрика с потерями
  • 8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
  • 1) Потери на электропровод­ность;
  • 2) Релаксационные потери;
  • 3) Ионизационные потери;
  • 9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
  • 13. Сегнетоэлектрики. Температура Кюри.
  • 14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
  • 15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
  • Глава 4. Униполярные транзисторы
  • 16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
  • 17. Основы керамической технологии материалов электронной техники.
  • 18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
  • 19. Электрический и тепловой пробой.
  • 5.4.1. Электрический пробой
  • 5.4.2. Электротепловой пробой
  • 20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
  • 21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
  • 22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
  • 24. Эффект Холла и Пельтье. Эффект Холла.
  • 25. Медь и ее сплавы. Алюминий и его сплавы.
  • 26. Магнитомягкие и магнитотвердые материалы. Области их применения
  • 15.1.1. Низкочастотные магнитомягкие материалы
  • 27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
  • 14.2.4. Причины, приводящие к образованию доменов
  • 14.2.5. Механизм технического намагничивания и магнитный гистерезис
  • 28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
  • 29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
  • 30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
  • 31. Требования, предъявляемые к свойствам магнитомягких материа­лов. Магнитные материалы на основе железа.
  • 32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
  • Феррит-гранаты
  • 33. Магнитные свойства и классификация магнитных материалов.
  • Ферромагнетики
  • 14.1.4. Антиферромагнетики
  • 14.1.5. Ферримагнетики
  • 34. Природа ферромагнетизма. Обменное взаимо­действие. Магнитная анизотропия.
  • 14.2.2. Магнитная анизотропия
  • 35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
  • 36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
  • 37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
  • § 6.1. Стационарный эффект Джозефсона
  • 38. Классификация диэлектрических материалов.
  • 7.11. Керамические диэлектрики
  • Конденсаторная керамика
  • 39. Коррозионная устойчивость ме­таллов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
  • 13. Сегнетоэлектрики. Температура Кюри.

    Активными (управляемыми) диэлектриками называют материалы, свойствами которых можно управлять в широких пределах с помо­ щью внешнего энергетического воздействия: напряженности элек­трического или магнитного поля, механического напряжения, тем­пературы, светового потока и др. В этом их принципиальное отличие от обычных (пассивных) диэлектриков.

    Из активных диэлектриков изготавливают активные элементы электронных приборов. Особенностью свойств этих материалов яв­ляются такие явления, как сегнетоэлектричество, электретный, пье­зоэлектрический и электрооптический эффекты, инжекционные токи и др., послужившие основой для разработки диэлектрических приборов. Ниже рассматриваются особенности строения и свойств некоторых активных диэлектриков, нашедших наиболее широкое применение.

    7.15.1. Сегнетоэлектрики

    Сегнетоэлектрики в отличие от обычных (пассивных) диэлектри­ков обладают регулируемыми электрическими характеристиками. Так, например, диэлектрическую проницаемость сегнетоэлектриков с помощью электрического напряжения можно изменять в широких пределах . Характерная особенность сегнетоэлектриков заключется в том, что у них наряду с электронной, ионной и релаксационными видами поляризации, вызываемыми внешним электрическим полем наблюдается самопроизвольная (спонтанная) поляризация , под дей­ствием которой эти диэлектрики приобретают доменную структуру и характерные сегнетоэлектрические свойства.

    Самопроизвольная поляризация проявляется в отсутствие элек­ трического поля в определенном интервале температур ниже точки Кюри Тк вследствие изменения строения элементарной ячейки кри­ сталлической решетки и образования доменной структуры, что, в свою очередь, вызывает у сегнетоэлектриков:

      необычно высокую диэлектрическую проницаемость (до де­сятков тысяч);

      нелинейную зависимость поляризованности, а следовательно,и диэлектрической проницаемости от напряженности приложенного электрического поля;

      резко выраженную зависимость диэлектрической проницаемости от температуры;

      наличие диэлектрического гистерезиса.

    Указанные выше свойства были детально изучены И.В.Курчатовым и П.П.Кобеко у сегнетовой соли (натриево-калиевая соль винной кислоты NaKC4H4O6 4Н2О), поэтому вещества, обладающие аналогичными свойствами, называют сегнетоэлектриками. Важней­ший для практического применения сегнетоэлектрик - титанат бария - открыл в 1944 г. Б.М. Бул. Ряд сегнетоэлектриков был открыт Г.А. Смоленским и др.

    В настоящее время известно около 500 материалов, обладающих сегнетоэлектрическими свойствами. В зависимости от структуры элементарной ячейки и механизма спонтанной поляризации различают сегнетоэлектрики ионные и дипольные, иначе - сегнетоэлектрики типа смещения и упорядочивающиеся, соответственно.

    Ионные сегнетоэлектрики имеют структуру элементарной ячей­ки типа перовскита (минерал СаТiO 3). К ним относятся:

    титанат бария ВаТiO 3 (Тк= 120°С),

    титанат свинца РbТiO 3 (Тк = 493°С),

    ти­танат кадмия CdTiО 3 (Тк = 223°С),

    метаниобат свинца PbNb 2 O 6 (Tk = 575°С),

    ниобат калия KNbO 3 (Tk = 435°С),

    иодат калия KNbO 3 (Тк = 210°С) и др.

    Все химические соединения этой группы нерастворимы в воде, обладают значительной механической прочностью, из­делия из них получают по керамической технологии. Они представ­ляют собой в основном кристаллы с преимущественно ионной связью. Для этой группы сегнетоэлектриков спонтанная поляриза­ция схематически показана на рис. 7.1 на примере элементарной ячейки ВаТiO 3 . Элементарная ячейка титаната бария при высоких температурах имеет форму куба (а = 4,01 10 -10 м); в узлах куба распо­ложены ионы бария, в середине граней - ионы кислорода, образуя кислородный октаэдр, в центре которого размещен ион титана (см. рис. 7.1, а, а"). В результате интенсивного теплового движения ион титана равновероятно находится вблизи каждого иона кисло­рода, поэтому электрический момент ячейки ввиду ее симметрич­ности равен нулю и диэлектрик находится в параэлектрическом состоянии (термин аналогичен термину «парамагнетик»). При тем­пературах равной и ниже некоторой, называемой точкой Кюри (Тк), ион титана , благодаря ослаблению энергии теплового движения, оказывается преимущественно вблизи одного из ионов кислорода, смещаясь на 1 10 -11 м . В этом же направлении смещаются и ионы ба­рия (на 5 10 -12 м).

    Ион кислорода, находящийся напротив О 2- , к которому сместил­ся Ti 4+ , сдвигается в противоположном направлении (на 4 10 -12 м). В результате этих смещений ионов кубическая решетка незначитель­ но деформируется в тетрагональную (с параметрами элементарной ячейки а = 3,99 A ,с = 4,036 A), а кислородный октаэдр не­ сколько искажается (см. рис. 7.1, б, б"). Хотя все эти смещения ио­ нов , в том числе и иона титана, сравнительно малы, тем не менее они очень важны и приводят к образованию значительного электрического дипольного момента Po –

    Рис. 7.1. Элементарная ячейка (а, а") титаната бария и ее проекция (б б") при температурах выше (а, а") и ниже точки Кюри (б, б")

    Возникает спонтанная поляризация и происходит фазовый переход диэлектрика из параэлектрического со­ стояния в сегнетоэлектрическое .

    Таким образом, самопроизвольная поляризация ионных сегнетоэлектриков возникает в отсутствие электрического поля в опреде­ ленном интервале температур в результате смещения иона Ti 4+ в объ­ еме элементарной ячейки из центрального положения и деформации последней.

    Дипольными сегнетоэлектриками являются

    сегнетова соль NaKC4H4O6 4Н2О (Тк = 24°С),

    триглицинсульфат (NH2CH2COOH)3 H2SO4 (Tk = 49°С),

    гуaнидиналюминийсульфатгексагидрат C(NH3)2A1(SO4)2 6Н2О (Тк > 200°С),

    нитрит натрия NaNO2 (Тк = 163°С),

    дигидрофосфат калия КН2Р04(Тк = -151 С) и др.

    Химические соединения этой группы обладают низкой механической прочностью и растворимы в воде , благодаря чему из водных растворов этих соединений можно выращивать крупные монокристаллы . Атомы в этих соединениях несут на себе заряд, но связаны между собой преимущественно кова- лентной связью.

    Дипольные сегнетоэлектрики в элементарной ячейке содержат атом (ион) или группу атомов (ионов), имеющих два положения рав­новесия, в каждом из которых образуется электрический дипольный момент Р о. При температурах выше точки Кюри в результате хаоти­ческого теплового движения эти два положения равновесия равнове­роятны, поэтому спонтанная поляризация отсутствует, и диэлектрик

    При Т<Тк одно из положений становится предпочтительным и в элементарной ячейке возникает дипольный момент; происходит спонтанная поляризация, и диэлек­трик переходит из параэлектрического состояния в

    сегнетоэлектри ческое (осуществляется фазовый переход).

    Ферромагнитные свойства вещества проявляются лишь при температурах ниже точки Кюри.

    Подавляющее большинство атомов обладает собственным магнитным полем. Практически любой атом можно представить в виде крошечного магнитика с северным и южным полюсами. Этот магнитный эффект объясняется тем, что электроны при движении по орбитам вокруг атомного ядра создают микроскопические электрические токи, которые и порождают магнитные поля (см. Открытие Эрстеда). Сложив магнитные поля, индуцируемые всеми электронами атома, мы получим суммарное магнитное поле атома.

    В большинстве веществ магнитные поля атомов ориентированы хаотично, в результате чего они взаимно гасятся. Однако в некоторых веществах и материалах (прежде всего в сплавах, содержащих железо, никель или кобальт) атомы упорядочиваются так, что их магнитные поля направлены в одну сторону и усиливают друг друга. В результате кусочек такого вещества оказывается окружен магнитным полем. Из таких веществ, называемых ферромагнетиками , поскольку обычно они содержат железо, и получают постоянные магниты .

    Чтобы понять, как образуются ферромагнетики, представим себе кусок раскаленного железа. Из-за высокой температуры атомы в нем движутся очень быстро и хаотично, не оставляя возможности для упорядочения атомных магнитных полей в одном направлении. Однако по мере понижения температуры тепловое движение ослабевает и начинают преобладать другие эффекты. В железе (и некоторых других металлах) на атомном уровне действует сила, стремящаяся объединить магнитные диполи соседних атомов друг с другом.

    Эта сила межатомного взаимодействия, получившая название обменной силы , была впервые описана Вернером Гейзенбергом (см. Принцип неопределенности Гейзенберга). Она обусловлена тем, что два соседних атома могут обмениваться внешними электронами, и эти электроны начинают принадлежать одновременно обоим атомам. Обменная сила прочно связывает атомы в кристаллической решетке металла и делает их магнитные поля параллельными и направленными в одну сторону. В результате упорядоченные магнитные поля соседних атомов взаимно усиливаются, а не гасятся. И такой эффект может наблюдаться в объеме вещества порядка 1 мм 3 , в котором содержится до 10 16 атомов. Атомы такого магнитного домена (см. ниже) выстроены таким образом, что мы имеем чистое магнитное поле.

    При высоких температурах действию этой силы мешает тепловое движение атомов, при низких же температурах атомные магнитные поля могут усиливать друг друга. Температура, при которой происходит этот переход, называется точкой Кюри металла — в честь открывшего ее французского физика Пьера Кюри.

    В реальности структура ферромагнетиков гораздо сложнее, чем описано выше. Обычно отдельные домены включают всего несколько тысяч атомов, магнитные поля которых однонаправлены, однако поля различных доменов направлены беспорядочно и по совокупности материал не намагничен. Поэтому обычный кусок железа магнитных свойств не проявляет. Однако при определенных условиях упорядочиваются и магнитные поля доменов, из которых состоит ферромагнетик (например, при остывании раскаленного железа в сильном магнитном поле). И тогда мы получаем постоянный магнит. Наличие точки Кюри объясняет также, почему при сильном нагревании постоянного магнита в какой-то момент происходит его полное размагничивание.

    Marie Sklodowska Curie, 1867-1934

    Польский, затем французский химик. Родилась в Варшаве в интеллигентской семье в тяжелый период российской оккупации, выпавшей на долю Польши. Учась в школе, помогала матери содержать пансион, прислуживая в нем в качестве горничной. После окончания школы какое-то время работала гувернанткой в состоятельных семьях, чтобы заработать средства на получение медицинского образования для своей сестры. На этот период приходится расстроенная родителями жениха помолвка Склодовской с юношей из семьи, где она прислуживала (родители сочли такой брак их сына недостойным их социального положения и упустили блестящую возможность улучшить свой фамильный генофонд). После получения ее сестрой медицинского образования в Париже туда же оправилась учиться и сама Склодовская.

    Блестящие результаты вступительных экзаменов по физике и математике привлекли к молодой полячке пристальное внимание ведущих французских ученых. Результатом стала ее помолвка в 1894 году с Пьером Кюри и брак с ним, заключенный в следующем году. В те годы исследования явления радиоактивности только начинались, и работы в этой области был непочатый край. Пьер и Мария Кюри занялись извлечением радиоактивных образцов из руд, добываемых в Богемии, и их исследованием. В результате супругам удалось открыть сразу несколько новых радиоактивных элементов (см. Радиоактивный распад), один из которых был назван кюрием в их честь, а еще один — полонием в честь родины Марии. За эти исследования супруги Кюри были совместно с Анри Беккерелем (Henri Becquerel, 1852-1908), открывшим рентгеновские лучи, удостоены Нобелевской премии по физике за 1903 год. Именно Мария Кюри первой ввела в употребление термин «радиоактивность» — по названию первого открытого Кюри радиоактивного элемента радия.

    После трагической гибели Пьера в 1906 году Мария Кюри отказалась от предложенной Сорбонским университетом пенсии и продолжила исследования. Ей удалось доказать, что в результате радиоактивного распада происходит трансмутация химических элементов, и, тем самым, положить начало новой отрасли естественных наук — радиохимии. За эту работу Мария Кюри была удостоена Нобелевской премии по химии за 1911 год и стала первым ученым — дважды лауреатом самой престижной премии за достижения в естественных науках. (В том же году Парижская Академия наук отклонила ее кандидатуру и не приняла Марию Кюри в свои ряды. Видимо, двух Нобелевских премий господам академикам показалось недостаточно для преодоления своей склонности к дискриминации по национальному и гендерному признаку.)

    В годы Первой мировой войны Мария Кюри занималась активными прикладными медицинскими исследованиями, работая на фронте с портативной рентгеновской установкой. В 1921 году в Америке была открыта подписка на сбор средств на покупку для Марии Кюри 1 грамма чистого радия, который был ей необходим для дальнейших исследований. В ходе ее триумфальной поездки по Америке с публичными лекциями ключик от шкатулки с драгоценным радиоактивным металлом был вручен Кюри самим Президентом США Уорреном Хардингом (Warren Harding).

    Последние годы жизни Марии Кюри были заполнены важными международными инициативами в области науки и медицины. В начале 1930-х годов здоровье Марии Кюри резко ухудшилось — сказались огромные дозы радиоактивного облучения, полученные ею в процессе многолетних экспериментов, — и в 1934 году она скончалась в санатории во Французских Альпах.

    Pierre Curie, 1859-1906

    Французский физик. Родился в Париже в семье видного врача. Получил домашнее образование. Первоначально изучал фармакологию в Сорбонне, однако очень скоро увлекся естественнонаучными экспериментами с кристаллами, которые проводил его брат Жак, и со временем стал директором Школы физики и химии (École de Physique et Chimie). В 1895 году женился на Марии Склодовской и в том же году защитил докторскую диссертацию по магнитным свойствам парамагнетиков (см. Закон Кюри). Вместе с супругой в тяжелейших рабочих условиях проводил в Школе опыты по изучению свойств радиоактивных веществ. В 1904 году получил назначение на пост профессора физики и директора лаборатории (вскоре преобразованной в Институт радия) Сорбонны. В апреле 1906 года Пьер Кюри погиб в результате нелепого несчастного случая, попав под колеса извозчика. Он даже не успел завершить оборудование своей новой лаборатории.

    Поделиться