Водород. Получение водорода. Производство водорода из алюминия Сколько получается водорода из 1 гр алюминия

В новостях по альтернативной энергетике за последнее время стали довольно часто упоминаться возможности получения энергии из алюминия. Прежде всего, имеется в виду использование алюминия для получения водорода и использования этого водорода как топлива для автомобильных и других двигателей. Попробуем с помощью обычных учебников по химии оценить возможности алюминиевой энергетики.

Прежде всего, определим количество водорода, которое можно получить из 1 кг алюминия при различных химических реакциях и его энергетическую ценность.

Для получения водорода из алюминия можно использовать свойство алюминия взаимодействовать с неконцентрированными кислотами:

соляной - 2А1 + 6НС1 = 2АlСl 3 + ЗН 2
серной - 2А1 + ЗН 2 SО 4 = Аl 2 (S0 4) 3 + 3Н 2

щелочами:

2Аl + 2NаОН + 2Н 2 О = 2NаАlО 2 + 3Н 2

а при определённых условиях и с водой

2Аl + 6Н 2 О = 2Аl(ОН) 3 + ЗН 2

или 2AI + ЗН 2 О = Al 2 O 3 + 3H 2 ,

Молярная масса алюминия M=27 г/моль, что равно 0,027 кг/моль.

Молярная масса водорода, состоящего из двух атомов составляет 2г/моль, что равно 0,002 кг/моль.

Молярная масса воды равна 18 г/моль.

Во всех этих реакциях из двух молекул алюминия получается три молекулы водорода.

Значит, в реакции из каждых 0,054 кг алюминия получается 0,006 кг водорода. Во второй реакции алюминия с водой для получения Al 2 O 3 также участвует 0,054 кг воды. В первой реакции количество воды для получения 2Аl(ОН) 3 будет участвовать в два раза больше. Несложными вычислениями получаем, что при химических реакциях с участием 1 кг алюминия и как минимум 1 кг воды получаем 0,111 кг водорода, объём которого при нормальных условиях составит 1,24 м 3 .

Теперь посчитаем энергетическую ценность полученного водорода.

Теплота сгорания водорода составляет 120 МДж/кг. Для полученного количества водорода количество энергии при его сгорании составит 13,32 МДж, что после перевода в более наглядные единицы измерения составит 3,7 кВт.ч. энергии.

Если теплота сгорания бензина в среднем составляет 46 МДж/кг, то для замены энергии водорода, полученной из 1 кг алюминия понадобится 0,296 кг бензина, или примерно треть литра.

Если сравнить алюминий и другие реактивы участвующие в реакции, как по массе, так и по стоимости с бензином, то алюминиевая энергетика явно проигрывает бензину и другим традиционным видам топлива. Сравним также энергозатраты на получение алюминия с выходом энергии водорода полученного из алюминия.

В промышленности алюминий получают электролизом раствора глинозёма Аl 2 О 3 в расплавленном криолите Na 3 AlF 6 с добавкой AlF 3 и CaF 2 при температуре 960°С и током в несколько тысяч ампер. На выплавку 1 кг алюминия расходуется 20 кВт.ч. электрической энергии.

Таким образом, расход энергии на получение алюминия в 5,4 раза больше, чем можно получить от водорода. Не смотря на то, что алюминий, как и водород один из самых распространённых на планете химических элементов, его невозможно использовать как источник энергии, предварительно не затрачивая на его производство большего количества энергии.

При обсуждении применения алюминия как энергоносителя не всегда учитываются технологические возможности применения алюминиевой энергетики. Сам процесс протекания химической реакции получения водорода из алюминия имеет определённые особенности. Алюминий относится к химически активным элементам и по активности занимает место между магнием и цинком. В обычных условиях реакции с водой не происходит из-за прочной плёнки окисла Аl 2 О 3 , который защищает алюминий от дальнейшего окисления. Чтобы алюминий в обычных условиях мог взаимодействовать с водой, необходимо удалять плёнку окисла без доступа воздуха, например, под слоем ртути, довольно ядовитым веществом. Но и тогда скорость реакции невелика. Чтобы разрушить окисную плёнку для взаимодействия алюминия с водой, необходимо подавать воду под давлением в виде пара при температуре 300 – 350 0 С. На нагрев пара необходимы время и энергия, чтобы и в пробках держать автомобиль в готовности «под парами». Поэтому удобнее пользоваться щёлочью или кислотой.

При взаимодействии алюминия со щёлочью или кислотой, плёнка постепенно разрушается и скорость реакции увеличивается. При этом увеличивается и температура реактивов, что в свою очередь ещё больше увеличивает скорость выделения водорода и повышения температуры. При других реакциях алюминиевого порошка с некоторыми реактивами, скорость протекания реакции и температура может быть большой, например, при горении термита. Алюминиевый порошок может входить в состав некоторых взрывчатых смесей. Как медленное, так и быстрое выделение тепла при химических реакциях трудно использовать для движения транспорта.

При работе автомобиля часто приходится быстро разгоняться и замедлять скорость или останавливаться. Увеличение или уменьшение мощности двигателя производится изменением количества поступающего топлива. Быстро удалить с алюминиевого порошка реактивы, чтобы точно регулировать скорость химической реакции невозможно. Поэтому автомобиль не сможет быстро набирать скорость, а после остановки некоторое время будет выделяться избыточный водород, создавая излишнее давление.

Химическим реакциям с выделением тепла (экзотермическим), предшествуют эндотермические реакции с поглощением тепла при получении реагентов. Поэтому дополнительной энергии получить не удаются. Реально мы имеем потери на переплавку шлаков, а также другие потери энергии на добычу, подготовку, транспортировку сырья и обычные тепловые потери при переплавке и электролизе алюминия.

Затраты энергии на обычную переплавку алюминиевого лома составляют примерно 5% от затрат энергии на получение алюминия электролизом расплава смеси сырья, поэтому алюминиевый лом нельзя считать бесполезными отходами. А вот реагенты, получаемые после химических реакций, перерабатывать опять в алюминий сложно и дорого.

Сейчас разработаны несколько вариантов сплавов алюминия, у которых не образуется защитной плёнки, но их надо защищать от действия воды и воздуха, да и стоимость их больше, чем обычного алюминия.

По мере прохождения химической реакции, всё большую часть смеси составляют уже отработанные реактивы и скорость реакции замедляется. Количество получаемого водорода уменьшается и двигатель, работающий на водороде, получаемом из алюминия уже «не тянет». Необходима заправка новой порцией топлива. Но, топливный бак остаётся почти полным, и не до конца прореагировавшую смесь, например, на основе алюминия с кислотой или щёлочью нужно удалять из бака и только потом можно добавлять новые реактивы. После удаления отработанных реактивов и добавления новых, обеспечить надёжную герметизацию заправочного отверстия, так как бак будет находиться под некоторым давлением.

Алюминиевая энергетика оказывается не такой уж и экологически чистой. Для перехода автомобилей на алюминиевое топливо необходимо во много раз увеличить количество электрической энергии для получения алюминия и достаточного количества других химических реактивов.

Существуют химические способы восстановления алюминия, например, восстановление его с помощью более активных химических элементов. Эти и другие похожие реакции использовали для получения самых первых образцов алюминия, когда стоимость алюминия была сравнима со стоимостью драгоценных металлов. Пожалуй, возвращаться к тем временам не стоит.

Опубликовано: 12 окт. 2013 г.
Водород выделяется лазером из воды с помощью древесного угля. Температура более тысячи градусов моментально сжигает углерод с водой, вернее с кислородом воды при этом водород выделяется из воды. Этот ролик показывает как свет эектрической дуги выделяет водород из воды и древесного угля.
Каменный уголь изолирует молнии а энергия от древесных углей создает атомарный водород, а также гидрокарбонат, лекарство от старения и самое хорошее питание для растений, за тем и озона.

Получение водорода из воды по формуле H2O + C +e = -H2CO3 и +H а именно вода древесный уголь энергия например лазер энергия молнии или электричество. Дешевые катализаторы для выделения водорода из воды и использование переменного напряжения 50 герц это даже можно сказать мое открытие. Я обнаружили простой способ получения водорода из воды, с помощью простого катализатора графит или древесный уголь.
Как выделить водород из воды с помощью древесного угля вы найдете в моем сайте http://xn--c1atbkq7d.xn--p1ai/ Нюргун.РФ, главный секрет приготовления правильного угля.
Уголь нужно сжигать большим количеством воздуха, И нагреванием угля выше тысячи двести градусов, только тогда она становится катализатором водорода, и молекула воды нагреется до тысячи градусов.

Подготовка графита для получения водорода из воды, через сжигания угля под водой. Опубликовано: 25 апр. 2015 г.
Уникальная комбинация уклерод соединений для извлечения водорода атомарного из пресной воды без каких либо добавок.

Быстрое и медленное горение вод(ы)орода, как доказательство выделения водорода из воды с помощью древесного угля. Опубликовано: 12 мая 2015 г.
Водород использую для медицины для снятия усталости.
Потребителю без разницы каким образом греют ему горячую воду, или сжиганием углеводородов или сверх эффективным новым технологиям.

Водород - широко распространенный элемент. Благодаря своей уникальности он может выступать в качестве окислителя и в качестве восстановителя. Существует несколько методов получения водорода .

Промышленный метод получения водорода.

1. Электролиз водных растворов солей (поваренная соль NaCl ).

2. Пропускание паров поды над раскаленным коксом (Т = 1000 °С):

H 2 O + C = H 2 + CO ,

Реакция обратима!

Смесь (Н 2 , СО и Н 2 О ) называется водяным газом.

А на 2-ой стадии водяной газ пропускают над оксидом железа (III) при температуре около 450°С:

СО + Н 2 О = СО 2 + Н 2 ,

Часто эту реакцию называют реакцией сдвига.

3. Получение из природного газа. Основа - конверсия метана (основной компонент природного газа, СН 4 ) с водяным паром. В итоге получается обратимая смесь, которая называется синтез-газом. Условия протекания процесса: никелевый катализатор и 1000°С:

СН 4 + Н 2 О = СО 2 + 3Н 2 ,

Эту реакцию часто используют для получения водорода для реакции Габера (синтез аммиака).

4. Крекинг нефтяных продуктов.

Лабораторный метод получения водорода.

1. Под воздействием разбавленных кислот на металлы, которые стоят в ряду напряжения левее водорода.

Zn + HCl = ZnCl 2 + H 2 ,

2. Электролиз растворов кислот, щелочей на катоде выделяется водород.

3. Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

4. Гидролиз гидридов:

NaH + H 2 O = NaOH + H 2 ,

5. Реакция кальция с водой:

Ca + 2H 2 O = Ca(ОН) 2 + H 2 .

Изготовлен генератор, представляющий собой герметичную емкость с внутренним объемом 220 мл и отделяемой крышкой, в которой находятся герметичные, изолированные токоподводы-крепления для алюминия и газоотводная трубка для отвода водорода. В генератор заливают 200 г раствора поваренной соли концентрацией 17 Закрепляют к токоподводам-креплениям алюминиевые пластины площадью 13 см 2 каждая. Закрывают генератор крышкой, убедясь в герметичности. После чего подают напряжение на токоподводы. Для более быстрого удаления оксидной пленки с поверхности алюминия в начале подается напряжение до 1,5 В. После деструкции оксидной пленки понижают напряжение до рабочей величины. Для работы генератора выбран диапазон напряжений 0,3-1,5 В, так как при этих значениях напряжения характеристика G/W), выше, чем при больших или меньших значениях напряжения, что позволяет более рационально использовать электроэнергию, но генератор водорода может работать и в более широком диапазоне напряжений.

Предлагаемый способ можно реализовать более эффективно

Для увеличения выхода водорода при тех же значениях мощности можно применить многоэлектродную систему в одной ячейке три электрода между отрицательным и положительным электродами располагается пассивный электрод, и так две ячейки, получен более высокий результат. Также в качестве восстановителя можно использовать дисперсный алюминий, что позволяет повысить выход водорода.

В результате испытания генератора по методике примера 1 заливают в генератор с двумя алюминиевыми электродами 200 г морской воды. Полная площадь каждого электрода 13 см 2. В результате получены следующие результаты: выход водорода при 1,5 В 0,5 л/ч, выход относительно энергии при 1,5 В 0,52 Вт/ч.

При увеличении общей концентрации солей упариванием увеличивается выход водорода во времени и относительно затраченная энергия достигает максимума 16-23 солей морской воды. Данный способ позволяет обеспечить равномерное получение водорода и позволяет регулировать его выход с требуемым потребителю расходом.

Формула изобретения

Способ получения водорода, включающий взаимодействие алюминия с водным раствором галогенида щелочного или щелочноземельного металла, отличающийся тем, что, с целью обеспечения возможности регулирования выхода водорода, взаимодействие осуществляют при одновременном пропускании электрического тока через реакционную смесь сначала при напряжении 1,5 В, а после удаления оксидной пленки напряжение снижают до 0,3 В.

Получение водорода в домашних условиях

Способ 1. Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.

Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс. Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин. пока водород вытеснит воздух из сосуда.

Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

2Al + 2NaOH + 6h3O → 2Na + 3h3

Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

В колбу насыпаем немного сульфата меди, и соли. Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли. Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла. Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

Способ 3. Водород из цинка и соляной кислоты.

Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой. Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

Zn + 2HCl → ZnCl2 + h3

Способ 4. Производство водорода электролизом.

Пропускаем через раствор воды и проваренной соли электрический ток. При реакции, будет выделятся водород и кислород.

Водород уже достаточно давно рассматривается и кое-где используется в качестве экологически чистого вида топлива. Но более широкому использованию водородного топлива мешает целый ряд неразрешенных на сегодняшний день проблем, главными из которых являются хранение и транспортировка. Однако, группа исследователей из американской Армейской научно-исследовательской лаборатории, проводя эксперименты на Абердинском испытательном полигоне близ Мериленда, сделала случайное открытие. Пролив воду на брусок особого алюминиевого сплава, состав которого держится пока в секрете, исследователи заметили мгновенно начавшийся процесс бурного выделения водорода.

Из школьного курса химии, если кто его еще помнит, водород является побочным продуктом реакции между водой и алюминием. Однако, данная реакция обычно протекает лишь при достаточно высокой температуре или в присутствии специальных катализаторов. Да и тогда она идет достаточно "неторопливо", на заполнение бака водородного автомобиля потребуется около 50 часов, а энергетическая эффективность такого метода получения водорода не превышает 50 процентов.

Все вышесказанное не имеет отношения к реакции, в которой принимает участие новый сплав алюминия. "Эффективность этой реакции вплотную приближается к 100 процентам, а сама реакция "разгоняется" до максимальной производительности менее, чем за три минуты" - рассказывает Скотт Грендаль, руководитель научной группы.

Использование системы, вырабатывающей водород по мере необходимости, решает массу имеющихся проблем. Воду и алюминиевый сплав легко транспортировать из одного места в другое, оба этих вещества сами по себе инертны и стабильны. Во-вторых, для начала реакции не требуется никакого катализатора, ни первоначального толчка, реакция начинает идти сразу же, как вода входит в контакт со сплавом.

Все вышесказанное еще не означает, что исследователи обнаружили панацею в области водородного топлива. В этом деле существует еще целый ряд вопросов, подлежащих выяснению или уточнению. Первым вопросом является то, будет ли работать такая схема получения водорода вне лаборатории, ведь существует множество примеров, когда экспериментальные технологии отлично работают в лабораторных условиях, но терпят полную неудачу при полевых испытаниях. Вторым вопросом является вопрос сложности и стоимости производства алюминиевого сплава, стоимость утилизации продуктов реакции, которые станут факторами, определяющим экономическую целесообразность нового способа получения водорода.

И в заключение следует отметить, что на выяснение упомянутых выше вопросов, скорее всего, уйдет не так уж и много времени. И только после этого можно будет сделать выводы о дальнейшей жизнеспособности нового метода получения водородного топлива.

Источники: www.ntpo.com, all-he.ru, h3-o.sosbb.net, 505sovetov.ru, dailytechinfo.org, joyreactor.cc

Кракен – гигантский осьминог

Гигантские крысы

Загадочные вирусы

Видение Джуд-Хаэля. Девушка с небес

Где предпочтительно остановиться в Москве

Москва - огромный мегаполис, ежедневно встречающий многочисленных приезжих. Кто-то отправляется сюда с экскурсионным визитом, у кого-то цель – деловая поездка. Удобство...

Китайская культура - древняя цивилизация

Согласно утверждению китайского ученого Лян Цичао, Китай вместе с Вавилоном, Индией и Египтом является одной из четырех древних цивилизаций. Эта большая...

Философия Древнего Востока

Особенности направлений древнеиндийской философии: брахманизм; философия эпического периода; неортодоксальные и ортодоксальные школы. Школы и направления древнекитайской философии: конфуцианство; даосизм; моизм; легизм; ...

Пока весь мир разрабатывает топливные элементы и говорит о водородной энергетике будущего, скептики не устают повторять, что до сих пор у человечества не существует дешевого способа получения водорода. Современным методом получения является электролиз воды, однако для его осуществления в глобальных масштабах потребуется уйма электричества.

Основные надежды человечество возлагает на проект термоядерного синтеза, который должен открыть людям неисчерпаемый источник энергии, однако прогнозировать дату вступления первого токамака в строй до сих пор никто не берется. Кроме того, ученые пытаются приспособить бактерии для выработки водорода из пищевых и промышленных отходов, а еще пытаются имитировать процесс фотосинтеза , разделяющий воду на водород и кислород в растениях. Все эти методы пока еще очень далеки от промышленной реализации.

Американские ученые, похоже, научились получать водород в больших количествах при реакции алюминия с водой.

Разработчики из Университета Пердью создали новый сплав металлов, обогащенный алюминием, который может быть весьма эффективен в процессе выработки водорода. Использование этого сплава, кроме прочего, экономически оправдано, и такой метод может уже в скором времени составить конкуренцию современным видам топлива, используемым в транспортной и энергетической индустрии.

Как говорит Джерри Вудолл, профессор университета и инициатор работ, его инновация может найти применение во всех сферах — как в мобильных устройствах для выработки энергии, так и в больших промышленных установках.

Новый сплав на 95% состоит из алюминия, а на оставшиеся 5% — из сложного сплава галлия, индия и олова. Хотя галлий и является очень редким и дорогим элементом, его количества в сплаве настолько малы, что стоимость сплава, и особенно стоимость его эксплуатации, может быть коммерчески выгодной.
При внесении этого сплава в воду алюминий вступает в реакцию окисления, в результате которой выделяется водород и тепловая энергия, а алюминий переходит в форму оксида.
2Al + 3H 2 O --> 3H 2 + Al 2 O 3 + Q

Из школьного курса химии каждому должно быть известно, что алюминий — чрезвычайно активный металл и легко вступает в реакцию с водой, высвобождая водород в ходе собственного окисления. Однако использование алюминия в быту, и особенно в качестве посуды для приготовления пищи, абсолютно безопасно, так как на поверхности алюминия всегда есть тончайшая, но очень прочная и инертная оксидная пленка Al 2 O 3 , из-за которой заставить алюминий вступить в реакцию с водой не так уж и легко.

Сплав индия, галлия и олова является критическим компонентом для технологии Вудолла: он препятствует образованию этой оксидной пленки и позволяет алюминию количественно вступить в реакцию с водой.

Кроме водорода ценным продуктом реакции является и тепловая энергия, которая также может быть использована. Оксид алюминия и более инертный сплав галлия, индия и олова может быть впоследствии восстановлен в ходе известного промышленного процесса, таким образом, замкнутый цикл может снизить стоимость выработки энергии, в пересчете на отечественные деньги, до менее чем 2 рублей за киловатт-час.

Заслуга химиков-технологов в том, что они не только смогли проделать титаническую работу по подбору химического состава алюминиевого сплава, но и научились контролировать его микроструктуру, которая и является ключом к функционализации материала.

Дело в том, что смесь металлов при затвердевании не формирует однородного твердого раствора из-за различий в строении кристаллических решеток металлов, кроме того, формирующийся сплав имеет довольно низкую температуру плавления. В результате конечный сплав формируется при остывании из расплава в виде смеси двух независимых фаз — алюминия и сплава галлия, индия и олова, вкрапленных в толщу материала в виде микроскопических кристаллитов.

Именно такая двухфазная композиция и определяет способность алюминия в данном сплаве вступать в реакцию с водой при нормальных условиях, а потому является критичной для всей технологии.

Кроме того, как оказалось, данный материал может быть получен в двух разных формах в зависимости от способа охлаждения расплавленной смеси металлов. Судя по всему, при быстром охлаждении (закалке) кристаллическая структура раствора не успевает перестроиться, в результате чего образец на выходе получается практически однофазным. Сплав Вудолла в такой форме не вступает в реакцию с водой до тех пор, пока не будет смочен расплавленной смесью галлия, индия и олова.

Однако обнаружив способность такого смоченного материала вступать в реакцию с водой при нормальных условиях, ученые изрядно воодушевились и спустя некоторое время обнаружили способность расплава, обогащенного алюминием, кристаллизоваться при медленном охлаждении в двухфазной форме. Такой материал способен вступать в реакцию с водой уже без участия жидкого сплава галлия, индия и олова. Как полагают ученые, определяющим фактором в препятствии для образования пленки оксида на поверхности материала является микроструктура материалов на поверхности раздела между двумя фазами, образующими материал.

В данный момент ученые озабочены технологической задачей брикетирования своего сплава для повышения удобства его использования. Так, брусочек алюминиевого сплава может быть помещен в реактор, размеры которого определяются необходимым количеством водорода, и выдать ровно столько водорода, сколько нужно в том месте и в то время, когда это необходимо. Такая технология, будучи доведенной до логического конца, снимет еще две насущные проблемы водородной энергетики (помимо собственно получения водорода из воды), а именно, хранение водорода и его транспортировку.
Сплав индия, галлия и олова является инертным компонентом и не участвует в реакции, так что после окончания реакции может быть использован заново практически без потерь.

Оксид алюминия также является очень удобной субстанцией для проведения его электрохимического восстановления в соответствии с процессом Холла-Эру, повсеместно используемого в алюминиевой промышленности в настоящее время:
2Al 2 O 3 + 3С = 4Al + 3CO 2
По словам учёных, восстановление алюминия из оксида, получающегося при производстве водорода, даже дешевле, чем его стандартное производство из бокситов, хотя полный цикл из алюминия в алюминий, разумеется, затратен — вечный двигатель учёные создавать не собирались.

В принципе, для внедрения технологии Вудолла, пока еще не описанной в научных публикациях, не требуется новых инноваций — необходимо лишь наладить инфраструктуру доставки сплава к конечному потребителю и организовать процесс его восстановления с использованием хорошо освоенных промышленностью методов получения металлического алюминия.

Алюминий является самым распространенным металлом на Земле. Кроме того, побочным продуктом разработки бокситных руд — минералов, содержащих алюминий, является как раз галлий — самый ценный компонент сплава Вудолла.

Сам ученый, награжденный в прошлом высшей наградой в области технологии в США, отмечает наряду с проблемами чисто экономического характера и необходимость проведения дополнительных экспериментов по влиянию состава и в особенности микроструктуры на поверхности раздела фаз в новом материале на его свойства. Такие работы вполне могут позволить в будущем перейти к использованию более дешевых и доступных металлов, чем галлий.

Поделиться