Центральная нервная система человека презентация. Общая физиология центральной нервной системы. Явления конвергенции, и дивергенции в ЦНС. Принцип “общего конечного пути”

Cлайд 1

Самостоятельная работа по предмету: «Физиология центральной нервной системы» Выполнил: студент гр. П1-11 =))

Cлайд 2

Гиппокамп. Гиппокампальный лимбический круг Пейпеца. Роль гиппокампа в механизмах образования памяти и обучения. Тема:

Cлайд 3

Гиппокамп (от др.-греч. ἱππόκαμπος - морской конёк) часть лимбической системы головного мозга (обонятельного мозга).

Cлайд 4

Cлайд 5

Анатомия гиппокампа Гиппокамп - парная структура, расположенная в медиальных височных долях полушарий. Правый и левый гиппокампы связаны комиссуральными нервными волокнами, проходящими в спайке свода головного мозга. Гиппокампы образуют медиальные стенки нижних рогов боковых желудочков, расположенных в толще полушарий большого мозга, простираются до самых передних отделов нижних рогов бокового желудочка и заканчиваются утолщениями, разделёнными мелкими бороздками на отдельные бугорки - пальцы ног морского конька. С медиальной стороны с гиппокампом сращена бахромка гиппокампа, являющаяся продолжением ножки свода конечного мозга. К бахромкам гиппокампа прилегают сосудистые сплетения боковых желудочков.

Cлайд 6

Cлайд 7

Гиппокампальный лимбический круг Пейпеца Джеймс Пейпец Врач невропатолог, доктор медицины (1883 - 1958) Создал и научно подтвердил оригинальную теорию "циркуляции эмоций" в глубинных структурах мозга, включая лимбическую систему. "Круг Пейпеца" создает эмоциональный тонус нашей психики и отвечает за качество эмоций, включая эмоции удовольствия, счастья, гнева и агрессии.

Cлайд 8

Лимбическая система. Лимбическая система имеет вид кольца и расположена на границе новой коры и ствола мозга. В функциональном отношении под лимбической системой понимают объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма. В эволюционном аспекте лимбическая система сформировалась в процессе усложнения форм поведения организма, перехода от жестких, генетически запрограммированных форм поведения к пластичным, основанным на обучении и памяти. Структурно-функциональная организация лимбической системы. обонятельная луковица, поясная извилина, парагиппокампальная извилина, зубчатая извилина, гиппокамп, миндалевидное тело, гипоталамус, сосцевидное тело, мамилярные тела.

Cлайд 9

Cлайд 10

Важнейшим циклическим образованием лимбической системы является круг Пейпеца. Он начинается от гиппокампа через свод к мамиллярным телам, затем к передним ядрам таламуса, далее в поясную извилину и через парагиппокампальную извилину обратно к гиппокампу. Перемещаясь по этому контуру, возбуждение создает длительные эмоциональные состояния и "щекочет нервы", пробегая сквозь центры страха и агрессии, наслаждения и отвращения. Этот круг играет большую роль в формировании эмоций, обучении и памяти.

Cлайд 11

Cлайд 12

Cлайд 13

Гиппокамп и связанные с ним задние зоны лобной коры ответственны за память и обучение. Эти образования осуществляют переход кратковременной памяти в долговременную. Повреждение гиппокампа ведет к нарушению усвоения новой информации, образования промежуточной и долговременной памяти. Функция формирования памяти и осуществление обучения связана преимущественно с кругом Пейпеца.

Cлайд 14

Существует две гипотезы. Согласно одной из них гиппокамп оказывает косвенное влияние на механизмы обучения путем регуляции бодрствования, направленного внимания, эмоционально-мотивационного возбуждения. По второй гипотезе, получившей в последние годы широкое признание, гиппокамп непосредственно связан с механизмами кодирования и классификации материала, его временной организации, т. е. регулирующая функция гиппокампа способствует усилению и удлинению этого процесса и, вероятно, предохраняет следы памяти от интерферирующих воздействий, в результате создаются оптимальные условия консолидации этих следов в долговременную память. Гиппокампальная формация имеет особое значение на ранних стадиях обучения, условнорефлекторной деятельности. При выработке пищевых условных рефлексов на звук коротколатентные ответы нейронов были зарегистрированы в гиппокампе, а длинно-латентные ответы - в височной коре. Именно в гиппокампе и перегородке найдены нейроны, активность которых изменялась только при предъявлении спаренных стимулов. Гиппокамп выступает первым пунктом конвергенции условных и безусловных стимулов. краткое содержание других презентаций

«Основы высшей нервной деятельности» - Внутреннее торможение. Рефлексы. Парадоксальный сон. Внешнее торможение. Инсайт. Нервная связь. Последовательность элементов рефлекторной дуги. Холерический темперамент. Образование условного рефлекса. Сон. Приобретаются организмом в течение жизни. Врожденные рефлексы. Создание учения о ВНД. Бодрствование. Человеческие дети. Сангвинистический темперамент. Вид внутреннего торможения. Верные суждения.

«Вегетативный отдел нервной системы» - Пиломоторный рефлекс. Болезнь Рейно. Фармакологические пробы. Парасимпатическая часть вегетативной нервной системы. Функции внутренних органов. Проба с пилокарпином. Солярный рефлекс. Лимбическая система. Бульбарный отдел. Симпатическая часть вегетативной нервной системы. Синдром Бернара. Особенности вегетативной иннервации. Поражение вегетативных ганглиев лица. Сакральный отдел. Холодовая проба. Симпатотонические кризы.

«Эволюция нервной системы» - Класс Млекопитающие. Промежуточный мозг. Нервная система позвоночных животных. Моллюски. Класс Рыбы. Продолговатый (задний) мозг. Передний отдел. Эволюция нервной системы. Мозжечок. Класс Птицы. Рефлекс. Класс Земноводные. Нейрон. Нервная система – это совокупность различных структур нервной ткани. Эволюция нервной системы позвоночных животных. Отделы головного мозга. Клетки организма. Нервная ткань – скопление нервных клеток.

«Работа нервной системы человека» - Иван Петрович Павлов. Сеченов Иван Михайлович. Рефлекторная дуга. Рефлекторный принцип работы нервной системы. Активное состояние нейронов. Сравнение безусловных и условных рефлексов. Понятие о рефлексе. М.Горький. Найдите соответствие. Коленный рефлекс.

«Физиология ВНД» - Физиология высшей нервной деятельности. Снижение метаболической активности. Кохлеарный имплантат. Объединение нейронов. Пациент. Глобальное рабочее пространство. Вегетативное состояние. Психофизиологическая проблема. Гибкость модулей. Современные нейрофизиологические теории сознания. Образование глобального рабочего пространства. Разнообразие различных состояний сознания. Проблема сознания в когнитивной науке.

«Особенности высшей нервной деятельности человека» - Безусловное торможение. Классификация условных рефлексов. Выработка условного рефлекса. Особенности высшей нервной деятельности человека. Образование временной связи. Виды торможения психической деятельности. Собака ест из миски. Безусловные рефлексы. Инсайт. Рефлексы. Условные рефлексы. Выделяется слюна. Функции мозга. Фистула для сбора слюны. Виды инстинктов. Основные характеристики условного рефлекса.

Рефлекс. Нейрон. Синапс. Механизм проведения возбуждения через синапс

Проф. Мухина И.В.

Лекция №6 Лечебный факультет

КЛАССИФИКАЦИЯ НЕРВНОЙ СИСТЕМЫ

Периферическ ая нервная система

Функции ЦНС:

1). Объединение и согласование всех функций тканей, органов и систем организма.

2). Связь организма с внешней средой, регуляция функций организма в соответствии с его внутренними потребностями.

3). Основа психической деятельности.

Основной вид деятельности ЦНС – рефлекс

Рене Декарт (1596-1650) - впервые понятие рефлекса как отражательной деятельности;

Георг Прохаски (1749-1820);

И.М. Сеченов (1863) «Рефлексы головного мозга», в котором впервые провозглашен тезис о том, что все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции.

Рефлексом (от лат. reflecto - отражение) называется ответная реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием ЦНС .

В основе рефлекторной теории Сеченова-Павлова лежат три принципа:

1. Структурности (структурной основой рефлекса является рефлекторная дуга)

2. Детерминизма (принцип причинно-следственных отношений). Ни одна ответная реакция организма не бывает без причины.

3. Анализа и синтеза (любое воздействие на организм сначала анализируется, затем обобщается).

Морфологически состоит из:

рецепторных образований , назначение которых заключается

в трансформации энергии внешних раздражений (информации)

в энергию нервного импульса;

афферентного (чувствительного ) нейрона, проводящего нервный импульс в нервный центр;

интернейрона (вставочного) нейрона или нервного центра,

представляющего собой центральную часть рефлекторной дуги;

эфферентного (двигательного) нейрона , проводящего нервный импульс до эффектора;

эффектора (рабочего органа), осуществляющего соответствующую деятельность.

Передача нервного импульса осуществляется с помощью нейротрансмиттеров или медиаторов – химических веществ, выделяющихся нервными окончаниями в

химическом синапсе

УРОВНИ ИЗУЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ЦНС

Организм

Структура и функция нейронов

Дендриты

Функции нейронов:

1. Интегративная;

2. Координирующая

3. Трофическая

Клетка Пуркинье

Дендриты

Астроцит

(мозжечок)

Пирамидный

Олигодендроцит

нейрон коры

Мультимедийное сопровождение лекций по «Основам нейрофизиологии и ВНД» Общая физиология ЦНС и возбудимых тканей

Основные проявления жизнедеятельности Физиологический покой Физиологическая активность Раздражение Возбуждение Торможение

Разновидности биологических реакций Раздражение – изменение структуры или функции при действии внешнего раздражителя. Возбуждение – изменение электрического состояния клеточной мембраны, приводящее к изменению функции живой клетки.

Структура биомембран Мембрана состоит из двойного слоя молекул фосфолипидов, покрытого изнутри слоем белковых молекул, а снаружи — слоем молекул белка и мукополисахаридов. В клеточной мембране имеются тончайшие каналы (поры) диаметром в несколько ангстрем. Через эти каналы молекулы воды и других веществ, а также ионы, имеющие соответствующий размеру пор диаметр, входят в клетку и покидают ее. На структурных элементах мембраны фиксируются различные заряженные группы, что придает стенкам каналов тот или иной заряд. Мембрана значительно менее проницаема для анионов, чем для катионов.

Потенциал покоя Между наружной поверхностью клетки и ее протоплазмой в состоянии покоя существует разность потенциалов порядка 60-90 мв. Поверхность клетки заряжена электроположительно по отношению к протоплазме. Эта разность потенциала называется мембранным потенциалом, или потенциалом покоя. Точное его измерение возможно только с помощью внутриклеточных микроэлектродов. Согласно мембранно-ионной теории Ходжкина-Хаксли, биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов K+ , Na+ , Cl- внутри и вне клетки, и различной проницаемостью для них поверхностной мембраны.

Механизм формирования МП В покое мембрана нервных волокон примерно в 25 раз более проницаема для ионов К, чем для ионов Na + , а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую. Большое значение для возникновения мембранного потенциала имеет градиент концентрации ионов по обе стороны мембраны. Показано, что цитоплазма нервных и мышечных клеток содержит в 30-59 раз больше ионов К + , но в 8-10 раз меньше ионов Na + и в 50 раз меньше ионов Cl — , чем внеклеточная жидкость. Величина потенциала покоя нервных клеток определяется соотношением положительно заряженных ионов К + , диффундирующих в единицу времени из клетки наружу по градиенту концентрации, и положительно заряженных ионов Na + , диффундирующих по градиенту концентрации в обратном направлении.

Распределение ионов по обе стороны мембраны клетки Na + K +A — Na +K + покой возбуждение

Na. Na ++ -K-K ++ — — насос мембраны 2 Na +3K + АТФ -аза

Потенциал действия Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

Потенциал действия В ПД принято различать его пик (т. н. спайк — spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т. н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0, 4-5, 0 мсек. При этом фаза реполяризации всегда продолжительнее.

Главным условием для возникновения ПД и распространяющегося возбуждения мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

С О С Т О Я Н И Е Н А Т Р И Е В Ы Х К А Н А Л О В N a + С О С Т О Я Н И Е С П А Й К И П О Т Е Н Ц И А Л А Д Е П О Л Я Р И З А Ц И И Р Е П О Л Я Р И З А Ц И Я П О К О Я М Е М Б Р А Н Ы А И н А

Параметры возбудимости 1. Порог возбудимости 2. Полезное время 3. Критический наклон 4. Лабильность

Порог раздражения Минимальное значение силы раздражителя (электрического тока), необходимое для снижения заряда мембраны от уровня покоя (Ео) до критического уровня (Ео), называется пороговым раздражителем. Порог раздражения Е п = Ео — Ек Подпороговый раздражитель меньше по силе, чем пороговый Надпороговый раздражитель — сильнее порогового

Пороговая сила любого стимула в определенных пределах находится в обратной зависимости от его длительности. Полученная в таких опытах кривая получила название «кривой силы-длительности». Из этой кривой следует, что ток ниже некоторой минимальной величины или напряжения не вызывает возбуждения, как бы длительно он не действовал. Минимальная сила тока, способная вызвать возбуждение, названа реобазой. Наименьшее время, в течение которого должен действовать раздражающий стимул, называют полезным временем. Усиление тока приводит к укорочению минимального времени раздражения, но не беспредельно. При очень коротких стимулах кривая силы-времени становится параллельной оси координат. Это означает, что при таких кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражения.

ЗАКОН «СИЛА — ДЛИТЕЛЬНОСТЬ»

Определение полезного времени практически затруднено, так как точка полезного времени находится на участке кривой, переходящей в параллельную. Поэтому предложено использовать полезное время двух реобаз — хронаксию. Хронаксиметрия получила широкое распространение как в эксперименте, так и в клинике для диагностики повреждений волокон двигательных нервов.

ЗАКОН «СИЛА — ДЛИТЕЛЬНОСТЬ»

Величина порога раздражения нерва или мышцы зависит не только от длительности стимула, но и от крутизны нарастания его силы. Порог раздражения имеет наименьшую величину при толчках тока прямоугольной формы, характеризующихся максимально быстрым нарастанием тока. При уменьшении крутизны нарастания тока ниже некоторой минимальной величины (т. н. критический наклон) ПД вообще не возникает, до какой бы конечной силы не увеличивался ток. Явление приспособления возбудимой ткани к медленно нарастающему раздражителю получило название аккомодация.

Закон «все или ничего» Согласно этому закону, под пороговые раздражения не вызывают возбуждения («ничего»), при пороговых же стимулах возбуждение сразу приобретает максимальную величину («все»), и уже не возрастает при дальнейшем усилении раздражителя.

лабильность Максимальное число импульсов, которое возбудимая ткань способна воспроизвести в соответствии с частотой раздражения нерв – свыше 100 гц мышца – около 50 гц

Законы проведения возбуждения Закон физиологической непрерывности; Закон двустороннего проведения; Закон изолированного проведения.

Место отхождения аксона от тела нервной клетки (аксонный холмик) имеет наибольшее значение в возбуждении нейрона. Это — триггерная зона нейрона, именно здесь легче всего возникает возбуждение. В этой области на протяжении 50-100 мк. аксон не имеет миелиновой оболочки, поэтому аксонный холмик и начальный сегмент аксона обладают наименьшим порогом раздражения (дендрит — 100 мв, сома — 30 мв, аксонный холмик — 10 мв). Дендриты тоже играют определенную роль в возникновении возбуждения нейрона. На них в 15 раз больше синапсов, чем на соме, поэтому ПД, проходящие по дендритам к соме, способны легко деполяризовать сому и вызвать залп импульсов по аксону.

Особенности метаболизма нейронов Высокое потребление О 2. Полная гипоксия в течение 5-6 минут ведет к гибели клеток коры. Способность к альтернативным путям обмена. Способность к созданию крупный запасов веществ. Нервная клетка живет только вместе с глией. Способность к регенерации отростков (0, 5- 4 мк / сут).

Классификация нейронов Афферентный, чувствительный Ассоциативный, вставочный Эфферентный, эффекторный, моторный рецептор мышца

Афферентные раздражения проводятся по волокнам, различающимся по степени миелинизации и, следовательно, по скорости проведения импульса. Волокна типа А - хорошо миелинизированы и проводят возбуждения со скоростью до 130-150 м/с. Они обеспечивают тактильные, кинестетические, а также быстрые болевые ощущения. Волокна типа В - имеют тонкую миелиновую оболочку, меньший общий диаметр, что приводит и к меньшей скорости проведения импульса - 3-14 м/с. Они являются составными частями вегетативной нервной системы и не участвуют в работе кожно-кинестетического анализатора, но могут проводить часть температурных и вторичных болевых раздражений. Волокна типа С - без миелиновой оболочки, скорость проведения импульса до 2- 3 м/с. Они обеспечивают медленную болевую и температурную чувствительности, а также ощущение давления. Обычно это нечетко дифференцированная информация о свойствах раздражителя.

Синапс (-ы) – специализированная зона контакта между нейронами или нейронами и другими возбудимыми клетками, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения.

Синапс возбуждающий – синапс, который возбуждает постсинаптическую мембрану; в ней возникает возбуждающий постсинаптический потенциал (ВПСП) и возбуждение распространяется дальше. Синапс тормозный – синапс, на постсинаптической мембране которого возникает тормозный постсинаптический потенциал (ТПСП), и пришедшее к синапсу возбуждение не распространяется дальше.

Классификация синапсов По местоположению выделяют нервно-мышечные и нейро-нейрональные синапсы, последние в свою очередь делятся на аксо-соматические, аксо-аксональные, аксо-дендритические, дендро-соматические. По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими. По способу передачи сигнала синапсы делятся на э лектрические, химические, смешанные.

Рефлекторная дуга Любая реакция организма в ответ на раздражение рецепторов при изменении внешней или внутренней среды и осуществляемая при посредстве ЦНС называется рефлексом. Благодаря рефлекторной деятельности организм способен быстро реагировать на изменения среды и приспособляться к этим изменениям. Каждый рефлекс осуществляется благодаря деятельности определенных структурных образований НС. Совокупность образований, участвующих в осуществлении каждого рефлекса, носит название рефлекторной дуги.

Принципы классификации рефлексов 1. По происхождению – безусловные и условные. Безусловные передаются по наследству, они закреплены в генетическом коде, а условные рефлексы создаются в процессе индивидуальной жизни на базе безусловных. 2. По биологическому значению → пищевые, половые, оборонительные, ориентировочные, локомоторные и др. . 3. По расположению рецепторов → интероцептивные, экстероцептивые и проприоцептивные. 4. По виду рецепторов → зрительные, слуховые, вкусовые, обонятельные, болевые, тактильные. 5. По месту расположения центра → спинальные, бульбарные, мезенцефальные, диенцефальные, кортикальные. 6. По длительности ответной реакции → фазические и тонические. 7. По характеру ответной реакции → моторные, секреторные, сосудодвигательные. 8. По принадлежности к системе органов → дыхательные, сердечные, пищеварительные и др. 9. По характеру внешнего проявления реакции → сгибательный, мигательный, рвотный, сосательный и др.

Общая физиология
центральной нервной
системы
Лекция N 2
для студентов 2 курса
Зав. каф. Штаненко Н.И.

План лекции:

Основные физиологические свойства
нервных центров.
Особенности распостранения
возбуждения в ЦНС
Торможение
в
ЦНС.
Природа
торможения. Виды торможения.
Механизмы координации рефлекторной
деятельности

Третий уровень координации осуществляется в процессе деятельности нервных центров и их взаимодействии

Нервные центры формируются
объединением нескольких локальных
сетей и представляют собой
комплекс элементов, способных
осуществить определенный рефлекс
или поведенческий акт.
.


это
совокупность
нейронов,
необходимых для осуществления
определенного
рефлекса
или
регуляции определенной функции.
М.Флуранс(1842)и Н.А.Миславский(1885)

– это сложное структурнофункциональное
объединение
нервных
клеток,
расположенных на различных уровнях
ЦНС и обеспечивающих за счет их
интегративной деятельности регуляцию
целостных приспособительных функций
(н-р дыхательный центр в широком смысле слова)

Классификация нервных центров (по ряду признаков)

Локализации (корковые, подкорковые,
спинальные);
Функции (дыхательный,
сосудодвигательный, теплообразования);
Модальности целостных
биологических состояний (голоднасыщение, эмоции, влечения и т.д.)

Одностороннее проведение возбуждения
Cинаптическая задержка - замедление
проведения возбуждения через центр 1,5-2 мс
Иррадиация (дивергенция)
Конвергенция (мультипликация)
Циркуляция (реверберация)
Основные свойства нервных центров определяются особенностями их
строения и наличием межнейронных синаптических связей.

Рефлекторная дуга

Синаптическая задержка проведения возбуждения

период временно необходимый для:
1. возбуждения рецепторов (рецептора)
для проведения импульсов возбуждения
по афферентным волокнам до центра;
3.
распространения
возбуждения
через
нервные центры;
4.
распространение
возбуждения
по
эфферентным волокнам до рабочего органа;
2.
5. латентный период рабочего органа.

Время рефлекса Центральное время рефлекса

Время рефлекса
(латентный период рефлекса) – это
время от момента нанесения раздражения до конечного
эффекта. В моносинаптическом рефлексе оно достигает 20-25 мс. Это
время расходуется на возбуждение рецепторов, проведение возбуждения по
афферентным волокнам, передача возбуждения с афферентных нейронов на
эфферентные (возможно через несколько вставочных), проведение возбуждения
по эфферентным волокнам и передача возбуждения с эфферентного нерва на
эффектор.
Центральное
время
рефлекса–
это
промежуток времени, за который нервный импульс проводится
по структурам мозга. В случае моносинаптической рефлекторной дуги оно
составляет примерно 1,5-2 мс – это время, необходимое для передачи
возбуждения в одном синапсе. Таким образом, центральное время рефлекса
косвенно указывает на число синаптических передач, имеющих место в
данном рефлексе. Центральное время у полисинаптических рефлексов
более 3 мс. В целом, поли-синаптические рефлексы очень широко
распространены в организме человека. Центральное время рефлекса
является главной составляющей общего времени рефлекса.

Коленный рефлекс

Примеры рефлекторных дуг
Коленный рефлекс
Моносинаптический. В
результате резкого
растяжения
проприорецепторов
четырехглавой мышцы
происходит разгибание
голени
(- оборонительный
Время рефлекса
0,0196-0,0238сек.
альфамотонейроны
проприорецептивный
двигательный
безусловный)
Но: даже простейшие рефлексы не работают отдельно.
(Здесь: взаимодействие с тормозной цепью мышцы – антагониста)

Механизм распространения возбуждения в ЦНС

Виды конвергенци возбуждения на одном нейроне

Мультисенсорная
Мультибиологическая
Сенсорно-биологическая

Явления конвергенции, и дивергенции в ЦНС. Принцип “общего конечного пути”

РЕВЕРБЕРАЦИЯ
(циркуляция)

Инерционность
Суммация:
последовательная(временная)
пространственная
Трансформация возбуждения
(ритма и частоты)
Посттетаническая потенциация
(постактивационная)

Временная суммация

Пространственная суммация

Суммация в ЦНС

Последовательная
Временная
суммация
Пространственная суммация

Трансформация ритма возбуждения

Трансформация ритма

Триггерные свойства
аксонного холмика
Порог 30 мв
Порог 10 мв
Тело нейрона
Ек
Ео
Аксонный холмик
Ек
Ео
«На ружейный выстрел
нейрон отвечает
пулеметной очередью»

Трансформация ритма

50
А
50
А
?
50
В
Фазовые соотношения
входящих импульсов
В
А
100
В
А
В
(следующие
попадают в
рефрактерность
предыдущего

Особенности распостранения возбуждения в ЦНС

Центральное облегчение

А
1
При
раздражении А
возбуждаются
2 нейрона (1,2)
2
В
3
4
5
При
раздражении В
возбуждаются
2 нейрона (5, 6)
6
Клетки
периферической
каймы
При раздражении А + В
возбуждаются 6
нейронов (1, 2, 3, 4, 5, 6)
Клетки
центральной
части
нейронного пула

Центральная окклюзия

А
1
При раздражении А
возбуждаются 4
нейрона (1,2,3,4)
2
3
При раздражении В
возбуждаются 4
нейрона (3, 4, 5, 6)
В
4
5
6
Клетки
центральной
части
нейронного пула
НО при совместномраздражении А + В
возбуждаются 4 нейронов (1, 2, 5, 6)

Явление окклюзии

3+3=6
4+4=8

Посттетаническая потенциация

Са2+
Са2+

Схема реверберации

Высокая чувствительность центров
к недостатку кислорода и глюкозы
Изберательная чувствительность
к химическим веществам
Низкая лабильность и высокая утомляемость
нервных центров
Тонус нервных центров
Пластичность

Пластичность синапса

Это функциональная и морфологическая перестройка
синапса:
Увеличение пластичности: облегчение (пресинаптическая
природа, Са++), потенциация (постсинаптическая природа,
повышение чувствительности постсинаптических рецепторов Сенситизация)
Уменьшение пластичности: депрессия (уменьшение
запасов нейромедиатора в пресинаптической мембране)
– это механизм развития привыкания - габитуации

Долговременные формы пластичности

Долговременная потенциация – длительное
усиление синаптической передачи на
выскочастотное раздражение, может
продолжаться дни и месяцы. Характерна для
всех отделов ЦНС (гиппокамп, глутаматергические
синапсы).
Долговременная депрессия – длительное
ослабление синаптической передачи (низкое
внутриклеточное содержание Са++)

активный самостоятельный
физиологический процесс,
вызываемый возбуждением и
направленный на ослабление,
прекращение или предотвращение
другого возбуждения

Т о р м о ж е н и е

Торможение
Торможение нервных клеток, центров –
паритетный по функциональной
значимости с возбуждением нервный
процесс.
Но! Торможение не распространяется,
оно «привязано» к синапсам, на которых
торможение и возникает.
Торможение управляет возбуждением.

Функции торможения

Ограничивает распостранение возбуждения в ЦНСиррадиацию, реверберацию, мультипликацию и др
Координирует функции, т.е. направляет возбуждение
по определенным путям к определенным нервным
центрам
Торможение выполняет охранительную или защитную
роль, ограждая нервные клетки от чрезмерного
возбуждения и истощения при действии
сверхсильных и длительных раздражителей

Центральное торможение открыл И.М. Сеченов в 1863 г

Центральное торможение в ЦНС (Сеченовское)

Сеченовское торможение

Классификация торможения в ЦНС

Электрическому состоянию мембраны
гиперполяризационное
деполяризационное
Отношение к синапсу
постсинаптическое
пресинаптическое
Нейрональной организации
поступательное,
возвратное,
латеральное

Биоэлектрическая активность нейрона

Т о р м о з н ы е медиаторы -

Т о р м о з н ы е медиаторы Г А М К (гамма-аминомасляная кислота)
Глицин
Таурин
Возникновение ТПСП в ответ на афферентное раздражение обязательно
связано с включением в тормозной процесс дополнительного звена тормозного интернейрона, аксональные окончания которого выделяют
тормозной медиатор.

Тормозной постсинаптический потенциал ТПСП

мв
0
4
6
8
мс
- 70
- 74
ГИПЕРПОЛЯРИЗАЦИЯ
К+ Clֿ

ВИДЫ ТОРМОЖЕНИЯ

П Е Р В И Ч Н О Е:
А) ПОСТСИНАПТИЧЕСКОЕ
Б) ПРЕСИНАПТИЧЕСКОЕ
В Т О Р И Ч Н О Е:
А) ПЕССИМАЛЬНОЕ по Н.Введенскому
Б) СЛЕДОВОЕ (при следовой гиперполяризации)
(Торможение вслед за возбуждением)

Ионная природа постсинаптического торможения

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение,
соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических
тормозных медиаторов выделяемых специализированными пресинаптическими нервными окончаниями.
Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление
способности клетки генерировать возбуждение. При этом происходит кратковременное повышение
проницаемости постсинаптической мембраны к ионам К+ или CI-, вызывающее снижение ее входного
электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП).

ПОСТСИНАПТИЧЕСКОЕ ТОРМОЖЕНИЕ

К
Cl
ГАМК
ТПСП

Механизмы торможения

Снижение возбудимости мембраны в
результате гиперполяризации:
1. Выход из клетки ионов калия
2. Поступление в клетку ионов хлора
3. Снижение плотности электрического
тока, протекающего через аксональный
холмик в результате активации
хлорных каналов

Классификация видов

I.
Первичное постсинаптическое
торможение:
а) Центральное (Сеченовское) торможение.
б) Корковое
в) Реципрокное торможение
г) Возвратное торможение
д) Латеральное торможение
По направлению:
Прямое.
Возвратное.
Латеральное.
Реципрокное.

МС, МР – мотонейроны сгибателя и разгибателя.

Схема прямого постсинаптического
торможения в сегменте спинного мозга.
МС, МР – мотонейроны
сгибателя и разгибателя.

Шагательный рефлекс

Примеры рефлекторных дуг
Шагательный рефлекс
4- растормаживание
3
4
1
2
А. непрерывное
возбуждение двигательных
центров ЦНС разбивается
на поочередные акты
возбуждение правой и
левой ноги.
(реципрокное+возвратн
ое торможение)
Б. контроль движения при
помощи позного рефлекса
(реципрокное торможение)

Реципрокное торможение – на уровне сегментов спинного мозга

ТОРМОЖЕНИЕ В ЦНС

ТОРМОЖЕНИЕ
Возвратное торможение
по Реншоу
В - возбуждение
Т - торможение
В ЦНС
Латеральное
торможение

Возвратное (антидромное) торможение

Возвратное постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс
регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи.
Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными
вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке,
посылающей эти аксонные коллатерали.По такому принципу осуществляется торможение мотонейронов.

Латеральное торможение

Синапсы на нейроне

Пресинаптическое торможение

Осуществляется посредством специальных тормозных интернейронов.
Его структурной основой являются аксо-аксональные синапсы,
образованные терминалиями аксонов тормозных интернейронов и
аксональными окончаниями возбуждающих нейронов.

ПРЕСИНАПТИЧЕСКОЕ
ТОРМОЖЕНИЕ
1 - аксон тормозного нейрона
2 - аксон возбуждающего нейрона
3 - постсинаптическая мембрана
альфа-мото-нейрона
Cl¯- канал
В окончаниях пресинаптического тормозного
аксона освобождается медиатор, который
вызывает деполяризацию возбуждающих
окончаний
за
счет
увеличения
проницаемости их мембраны для CI-.
Деполяризация
вызывает
уменьшение
амплитуды потенциала действия, приходящего
в возбуждающее окончание аксона. В
результате происходит угнетение процесса
высвобождения медиатора возбуждающими
нервными
окончаниями
и
снижение
амплитуды
возбуждающего
постсинаптического потенциала.
Характерной особенностью
пресинаптической деполяризации является
замедленное развитие и большая длительность
(несколько сотен миллисекунд), даже после
одиночного афферентного импульса.

Пресинаптическое торможение

Пресинаптическое торможение в первую очередь блокирует слабые
асинхронные афферентные сигналы и пропускает более сильные,
следовательно, оно служит механизмом выделения, вычленения более
интенсивных афферентных импульсов из общего потока. Это имеет
огромное приспособительное значение для организма, так как из всех
афферентных сигналов, идущих к нервным центрам, выделяются самые
главные, самые необходимые для данного конкретного времени.
Благодаря этому нервные центры, нервная система в целом освобождается
от переработки менее существенной информации

Афферентные импульсы от мышцы – сгибателя с помощью клеток Реншоу вызывают пресинаптическое торможение на афферентном нерве, который под

Схема пресинаптического торможения
в сегменте спинного мозга.
Афферентные
импульсы от мышцы
– сгибателя с
помощью клеток
Реншоу вызывают
пресинаптическое
торможение на
афферентном нерве,
который подходит к
мотонейрону
разгибателю.

Примеры нарушения торможения в ЦНС

НАРУШЕНИЕ ПОСТСИНАПТИЧЕСКОГО ТОРМОЖЕНИЯ:
СТРИХНИН - БЛОКАДА РЕЦЕПТОРОВ ТОРМОЗНЫХ СИНАПСОВ
СТОЛБНЯЧНЫЙ ТОКСИН - НАРУШЕНИЕ ОСВОБОЖДЕНИЯ
ТОРМОЗНОГО МЕДИАТОРА
НАРУШЕНИЕ ПРЕСИНАПТИЧЕСКОГО ТОРМОЖЕНИЯ:
ПИКРОТОКСИН - БЛОКАДА ПРЕСИНАПТИЧЕСКИХ СИНАПСОВ
Стрихнин и столбнячный токсин на него не влияют.

Постсинаптическое возвратное торможение.. Блокируется стрихнином.

Пресинаптическое торможение. Блокируется пикротоксином

Классификация видов

Вторичное торможение не связано с
тормозными структурами, является
следствием предшествующего
возбуждения.
а) Запредельное
б)Пессимальное торможение Введнского
в) Паробиотическое
г)Торможение вслед за возбуждением

Индукция

По характеру влияния:
Положительная - наблюдается когда торможение сменяется
повышенной возбудимостью вокруг себя.
Отрицательная - если очаг возбуждения сменяется торможением
По времени:
Одновременная Положительная одновременная индукция
наблюдается когда торможение сразу (одновременно) создает состояние
повышенной возбудимости вокруг себя.
Последовательная При смене процесса торможения на
возбуждение – положительная последовательная индукция

Регистрация ВПСП и ТПСП

ПРИНЦИПЫ КООРДИНАЦИИ РЕФЛЕКТОРНОЙ ДЕЯТЕЛЬНОСТИ

1. РЕЦИПРОКНОСТИ
2. ОБЩЕГО КОНЕЧНОГО ПУТИ
(по Шеррингтону)
3. ДОМИНАНТЫ
4. СУБОРДИНАЦИИ НЕРВНЫХ ЦЕНТРОВОПРЕДЕЛЕНИЕ ДОМИНАНТЫ
(ПО А.А.Ухтомскому, 1931)
временно
господствующий
очаг
возбуждения
в
центральной
нервной системе, определяющий
текущую деятельность организма
ДОМИНАНТА
-

ОПРЕДЕЛЕНИЕ ДОМИНАНТЫ
(ПО А.А.Ухтомскому, 1931)
временно
господствующий
рефлекс
или
поведенческий
акт,
которым
трансформируется и направляется
для данного времени при прочих
равных условиях работа прочих
рефлекторных дуг, рефлекторного
аппарата и поведения в целом
ДОМИНАНТА
-

ПРИНЦИП ДОМИНАНТЫ
Раздражители
Нервные центры
Рефлексы

Основные признаки доминанты
(по А.А.Ухтомскому)
1. Повышенная возбудимость доминантного
центра
2. Стойкость возбуждения в доминантном
центре
3. Способность суммировать возбуждения,
тем самым подкрепляя свое возбуждение
посторонними импульсами
4. Способность тормозить другие текущие
рефлексы на общем конечном пути
5. Инертность доминантного центра
6. Способность растормаживаться

Схема образования доминанты Д – стойкое возбуждение -обхватывательный рефлекс у лягушки (доминанта), вызванное аппликацией стрихнина. Все

Д
Схема образования доминанты
Д – стойкое возбуждение обхватывательный рефлекс у
лягушки (доминанта),
вызванное аппликацией
стрихнина. Все раздражения в
точках 1,2,3,4 не дают ответов,
а только усиливают активность
нейронов Д.
Поделиться