Классическое определение вероятности случайного события. Вероятность, случайное событие, случайная величина. Статистическое определение вероятности

Основы теории вероятности

План:

1. Случайные события

2. Классическое определение вероятности

3. Вычисление вероятностей событий и комбинаторика

4. Геометрическая вероятность

Теоретические сведения

Случайные события.

Случайное явление – явление, исход которого однозначно не определен. Это понятие можно трактовать в достаточно широком смысле. А, именно: все в природе достаточно случайно, появление и рождение любого индивидуума есть случайное явление, выбор товара в магазине также случайное явление, получение оценки на экзамене есть случайное явление, заболевание и выздоровление есть случайные явления и т.д.

Примеры случайных явлений:

~ Производится стрельба из орудия, установленным под заданным углом к горизонту. Попадание его в цель случайно, но попадание снаряда в некоторую "вилку", есть закономерность. Можно указать расстояние, ближе которого и дальше которого, снаряд не полетит. Получится некоторая "вилка рассеивания снарядов"

~ Одно и тоже тело взвешивается несколько раз. Строго говоря, каждый раз будут получаться разные результаты, пусть отличающиеся на ничтожно малую величину, но отличаться.

~ Самолет, летая по одному и тому же маршруту, имеет некоторый полетный коридор, в пределах которого может лавировать самолет, но никогда у него не будет строго одинакового маршрута

~ Спортсмен никогда не сможет пробежать одну и туже дистанцию с одинаковым временем. Его результаты также будут находиться в пределах некоторого численного промежутка.

Опыт, эксперимент, наблюдение являются испытаниями

Испытание – наблюдение или выполнение некоторого комплекса условий, выполняемых неоднократно, причем регулярно повторяющихся в оной и тоже последовательности, длительности, с соблюдением иных одинаковых параметров.

Рассмотрим выполнение спортсменом выстрела по мишени. Чтобы он был произведен, необходимо выполнить такие условия как изготовка спортсмена, зарядка оружия, прицеливание и т.д. "Попал" и "не попал" – события, как результат выстрела.

Событие – качественный результат испытания.

Событие может произойти или не произойти События обозначаются заглавными латинскими буквами. Например: D ="Стрелок попал в мишень". S="Вынут белый шар". K="Взятый наудачу лотерейный билет без выигрыша.".

Подбрасывание монеты – испытание. Падение ее "гербом" – одно событие, падение ее "цифрой" – второе событие.

Любое испытание предполагает наступления нескольких событий. Одни из них могут быть нужными в данный момент времени исследователю, другие – не нужными.

Событие называется случайным , если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальней­шем, вместо того чтобы говорить "совокупность условий S осуществлена", будем говорить кратко: "произведено испытание". Таким образом, событие будет рассматри­ваться как результат испытания.

~ Стрелок стреляет по мишени, разделенной на четыре, области. Выстрел - это испытание. Попадание в определенную область мишени - событие.

~ В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появле­ние шара определенного цвета - событие.

Виды случайных событий

1. События называют несовместными, если появле­ние одного из них исключает появление других событий в одном и том же испытании.

~ Из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События € появилась стандартная деталь" и с появилась не­стандартная деталь" - несовместные.

~ Брошена монета. Появление "герба" исключает по­явление надписи. События "появился герб" и "появилась надпись" - несовместные.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.

В частности, если события, образующие полную группу, попарно несов­местны, то в результате испытания появится одно и только одно из этих событий.Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

~ Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий:

1. "выигрыш выпал на первый билет и не выпал на второй",

2. "выигрыш не выпал на первый билет и выпал на второй",

3. "выигрыш выпал на оба билета",

4. "на оба билета выигрыш не выпал".

Эти события обра­зуют полную группу попарно несовместных событий,

~ Стрелок произвел выстрел по цели. Обязательно прои­зойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события также образуют полную группу.

2. События называют равновозможными, если есть осно­вания считать, что ни одно из них не является более возможным, чем другое.

~ Появление "герба" и появление надписи при бросании монеты - равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму, и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

~ Появление того или иного числа очков на брошенной игральной кости - равновозможные события. Действительно, предпо­лагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника, и наличие очков не оказы­вает влияния на выпадение любой грани.

3. Событие называется достоверным, если оно не может не произойти

4. Событие называется не достоверным , если оно не может произойти.

5. Событие называются противоположным к некоторому событию, если оно состоит из не появления данного события. Противоположные события не совместимые, но одно из них должно обязательно произойти. Противоположные события принято обозначать как отрицания, т.е. над буквой пишется черточка. События противоположные: А и Ā; U и Ū и т.д. .

Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей.

Существует несколько определений этого понятия. Приведем определение, которое называют клас­сическим. Далее укажем слабые стороны этого определе­ния и приведем другие определения, позволяющие пре­одолеть недостатки классического определения.

Рассмотрим ситуацию: В ящике содержится 6 оди­наковых шаров, причем 2 - красные, 3- синие и 1-белый. Очевидно, возмож­ность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Эту возможность можно охарактеризовать числом, которое и называют вероятностью события (появления - цветного шара).

Вероятность - число, характеризующее степень воз­можности появления события.

В рассматриваемой ситуации обозначим:

Событие А ="Вытаскивание цветного шара".

Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным (возможным) исходом и событием. Элементарные исходы можно обозначать буквами с индексами внизу, например: k 1 , k 2 .

В нашем примере 6 шаров, поэтому 6 возможных исходов: появился белый шар; появился красный шар; появился синий шар и т.д. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможные (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими исходами этому событию. В нашем примере благоприятствуют со­бытию А (появлению цветного шара) следующие 5 исхо­дов:

Таким образом, событие А наблюдается, если в испы­тании наступает один, безразлично какой, из элементар­ных исходов, благоприятствующих А. Это появление любого цветного шара, которых в ящике 5 штук

В рассмат­риваемом примере элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, Р(А)= 5/6. Это число дает ту количественную оценку степени возможности появления цветного шара.

Определение вероятности:

Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Р(А)=m/n или Р(А)=m: n, где:

m -число элементарных исходов, благоприятствую­щих А;

п - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы не­совместные, равновозможные и образуют полную группу.

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае m = n следовательно, p=1

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m=0, следовательно, p=0.

3.Вероятность случайного события есть положительное число, заключенное между нулем и еди­ницей. 0т < n.

В последующих темах будут приведены теоремы, которые позволяют по из­вестным вероятностям одних событий находить вероятно­сти других событий.

Промер. В группе студентов 6 девушек и 4 юношей. Какова вероятность того, что наудачу выбранный студент будет девушка? будет юноша?

p дев = 6 / 10 =0,6 p юн = 4 / 10 = 0,4

Понятие "вероятность" в современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Рассмотрим некоторые моменты такого подхода.

Пусть в результате испытания наступает одно и только одно из событий: w i (i=1, 2, .... п). События w i ,- называется элементарными событиями (элементарными исходами). О тсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий Ω (греческая буква омега заглавная), а сами элементарные собы­тия - точками этого пространства. .

Событие А отождествляют с подмножеством (пространства Ω), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество Ω , элементы которого есть исходы, благоприятствующие В, и т, д. Таким образом, множества всех со­бытий, которые могут наступить в испытании, есть множество всех подмножеств Ω, Само Ω наступает при любом исходе испытания, поэтому Ω - достоверное событие; пустое подмножество пространства Ω- -невозможное событие (оно не наступает ни при каком исходе испытания).

Элементарные события выделяются из числа всех событий тем, "по каждое из них содержит только один элемент Ω

Каждому элементарному исходу w i ставят в соответствие поло­жительное число р i - вероятность этого исхода, причем сумма всех р i равна 1 или со знаком суммы этот факт запишется в виде выражения:

По определению, вероятность Р(А) события А равна сумме вероят­ностей элементарных исходов, благоприятствующих А. Поэтому вероятность события достоверного равна единице, не­возможного - нулю, произвольного - заключена между нулем и еди­ницей.

Рассмотрим важный частный случай, когда все исходы равновоз­можные, Число исходов равно л, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1/п. Пусть событию А благоприятствует m исходов.

Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р(А)=1/n + 1/n+…+1/n = n·1/n=1

Получено классическое определение вероятности.

Существует еще аксиоматический подход к понятию "вероятность". В системе аксиом, предложенной. Колмогоровым А. Н, неопре­деляемыми понятиями являются элементарное событие и вероятность. Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятно­сти.

Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицатель­ное действительное число Р(А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

3. Вероятность наступления хотя бы одного из попарно несов­местных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей к зависимости между ними выводят в качестве теорем.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Глава I . СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ

1.1. Закономерность и случайность, случайная изменчивость в точных науках, в биологии и медицине

Теория вероятностей – область математики, изучающая закономерности в случайных явлениях. Случайное явление – это явление, которое при неоднократном воспроизведении одного и того же опыта может протекать каждый раз несколько по-иному.

Очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы случайности, но в различных ситуациях мы учитываем их по-разному. Так, в ряде практических задач ими можно пренебречь и рассматривать вместо реального явления его упрощенную схему – «модель», предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом выделяются самые главные, решающие факторы, характеризующие явление. Именно такая схема изучения явлений чаще всего применяется в физике, технике, механике; именно так выявляется основная закономерность, свойственная данному явлению и дающая возможность предсказать результат опыта по заданным исходным условиям. А влияние случайных, второстепенных, факторов на результат опыта учитывается здесь случайными ошибками измерений (методику их расчета рассмотрим далее).

Однако описанная классическая схема так называемых точных наук плохо приспособлена для решения многих задач, в которых многочисленные, тесно переплетающиеся между собой случайные факторы играют заметную (часто определяющую) роль. Здесь на первый план выступает случайная природа явления, которой уже нельзя пренебречь. Это явление необходимо изучать именно с точки зрения закономерностей, присущих ему как случайному явлению. В физике примерами таких явлений являются броуновское движение, радиоактивный распад, ряд квантово-механических процессов и др.

Предмет изучения биологов и медиков – живой организм, зарождение, развитие и существование которого определяется очень многими и разнообразными, часто случайными внешними и внутренними факторами. Именно поэтому явления и события живого мира во многом тоже случайны по своей природе.

Элементы неопределенности, сложности, многопричинности, присущие случайным явлениям, обусловливают необходимость создания специальных математических методов для изучения этих явлений. Разработка таких методов, установление специфических закономерностей, свойственных случайным явлениям, –главные задачи теории вероятностей. Характерно, что эти закономерности выполняются лишь при массовости случайных явлений. Причем индивидуальные особенности отдельных случаев как бы взаимно погашаются, а усредненный результат для массы случайных явлений оказывается уже не случайным, а вполне закономерным. В значительной мере данное обстоятельство явилось причиной широкого распространения вероятностных методов исследования в биологии и медицине.

Рассмотрим основные понятия теории вероятностей.

1.2. Вероятность случайного события

Каждая наука, развивающая общую теорию какого-либо круга явлений, базируется на ряде основных понятий. Например, в геометрии – это понятия точки, прямой линии; в механике – понятия силы, массы, скорости и т. д. Основные понятия существуют и в теории вероятностей, одно из них – случайное событие.

Случайное событие – это всякое явление (факт), которое в результате опыта (испытания) может произойти или не произойти.

Случайные события обозначаются буквами А, В, С … и т. д. Приведем несколько примеров случайных событий:

А –выпадение орла (герба) при подбрасывании стандартной монеты;

В – рождение девочки в данной семье;

С – рождение ребенка с заранее заданной массой тела;

D – возникновение эпидемического заболевания в данном регионе в определенный период времени и т. д.

Основной количественной характеристикой случайного события является его вероятность. Пусть А – какое-то случайное событие. Вероятность случайного события А – это математическая величина, которая определяет возможность его появления. Она обозначается Р (А ).

Рассмотрим два основных метода определения данной величины.

Классическое определение вероятности случайного события обычно базируется на результатах анализа умозрительных опытов (испытаний), суть которых определяется условием поставленной задачи. При этом вероятность случайного события Р(А) равна:

где m – число случаев, благоприятствующих появлению события А ; n – общее число равновозможных случаев.

Пример 1. Лабораторная крыса помещена в лабиринт, в котором лишь один из четырех возможных путей ведет к поощрению в виде пищи. Определите вероятность выбора крысой такого пути.

Решение : по условию задачи из четырех равновозможных случаев (n =4) событию А (крыса находит пищу)
благоприятствует только один, т. е. m = 1 Тогда Р (А ) = Р (крыса находит пищу) = = 0,25= 25%.

Пример 2. В урне 20 черных и 80 белых шаров. Из нее наугад вынимается один шар. Определите вероятность того, что этот шар будет черным.

Решение : количество всех шаров в урне – это общее число равновозможных случаев n , т. е. n = 20 + 80 = 100, из них событие А (извлечение черного шара) возможно лишь в 20, т. е. m = 20. Тогда Р (А ) = Р (ч. ш.) = = 0,2 = 20%.

Перечислим свойства вероятности следующие из ее классического определения – формула (1):

1. Вероятность случайного события – величина безразмерная.

2. Вероятность случайного события всегда положительна и меньше единицы, т. е. 0 < P (A ) < 1.

3. Вероятность достоверного события, т. е. события, которое в результате опыта обязательно произойдет (m = n ), равна единице.

4. Вероятность невозможного события (m = 0) равна нулю.

5. Вероятность любого события – величина не отрицательная и не превышающая единицу:
0 £ P (A ) £ 1.

Статистическое определение вероятности случайного события применяется тогда, когда невозможно использоватьклассическое определение (1). Это часто имеет место в биологии и медицине. В таком случае вероятность Р (А ) определяют путем обобщения результатов реально проведенных серий испытаний (опытов).

Введем понятие относительной частоты появления случайного события. Пусть была проведена серия, состоящая из N опытов (число N может быть выбрано заранее); интересующее нас событие А произошло в М из них (M < N ). Отношение числа опытов М , в которых произошло это событие, к общему числу проведенных опытов N называют относительной частотой появления случайного события А в данной серии опытов – Р * (А )

Р* (А ) = .

Экспериментально установлено, что если серии испытаний (опытов) проводятся в одинаковых условиях и в каждой из них число N достаточно велико, то относительная частота обнаруживает свойство устойчивости: от серии к серии она меняется мало, приближаясь c увеличением числа опытов к некоторой постоянной величине. Ее и принимают за статистическую вероятность случайного события А :

Р (А) = lim , при N , (2)

Итак, статистической вероятностью Р (А ) случайного события А называют предел, к которому стремится относительная частота появления этого события при неограниченном возрастании числа испытаний (при N → ∞).

Приближенно статистическая вероятность случайного события равна относительной частоте появления этого события при большом числе испытаний:

Р (А ) ≈ Р* (А ) = (при больших N ) (3)

Например, в опытах по бросанию монеты относительная частота выпадения герба при 12000 бросаний оказалась равной 0,5016, а при 24000 бросаний – 0,5005. В соответствии с формулой (1):

P (герб) = = 0,5 = 50%

Пример. При врачебном обследовании 500 человек у 5 из них обнаружили опухоль в легких (о. л.). Определите относительную частоту и вероятность этого заболевания.

Решение : по условию задачи М = 5, N = 500, относительная частота Р *(о. л.) = М /N = 5/500 = 0,01; поскольку N достаточно велико, можно с хорошей точностью считать, что вероятность наличия опухоли в легких равна относительной частоте этого события:

Р (о. л.) = Р *(о. л.) = 0,01 = 1%.

Перечисленные ранее свойства вероятности случайного события сохраняются и при статистическом определении данной величины.

1.3. Виды случайных событий. Основные теоремы теории вероятностей

Все случайные события можно разделить на:

¾ несовместные;

¾ независимые;

¾ зависимые.

Для каждого вида событий характерны свои особенности и теоремы теории вероятностей.

1.3.1. Несовместные случайные события. Теорема сложения вероятностей

Случайные события (А, В, С, D …) называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Пример1. Подброшена монета. При ее падении появление «герба» исключает появление «решки» (надписи, определяющей цену монеты). События «выпал герб» и «выпала решка» несовместные.

Пример 2. Получение студентом на одном экзамене оценки «2», или «3», или «4», или «5» – события несовместные, так как одна из этих оценок исключает другую на том же экзамене.

Для несовместных случайных событий выполняется теорема сложения вероятностей: вероятность появления одного, но все равно какого, из нескольких несовместных событий А1, А2, А3 … А k равна сумме их вероятностей:

Р(А1или А2 … или А k ) = Р(А1) + Р(А2) + …+ Р(А k ). (4)

Пример 3. В урне находится 50 шаров: 20 белых, 20 черных и 10 красных. Найдите вероятность появления белого (событие А ) или красного шара (событие В ), когда шар наугад достают из урны.

Решение: Р (А или В ) = Р (А ) + Р (В );

Р (А ) = 20/50 = 0,4;

Р (В ) = 10/50 = 0,2;

Р (А или В ) = Р (б. ш. или к. ш.) = 0,4 + 0,2 = 0,6 = 60%.

Пример 4. В классе 40 детей. Из них в возрасте от 7 до 7,5 лет 8 мальчиков (А ) и 10 девочек (В ). Найдите вероятность присутствия в классе детей такого возраста.

Решение: Р (А ) = 8/40 = 0,2; Р (В ) = 10/40 = 0,25.

Р(А или В) = 0,2 + 0,25 = 0,45 = 45%

Следующее важное понятие – полная группа событий: несколько несовместных событий образуют полную группу событий, если в результате каждого испытания может появляться только одно из событий этой группы и никакое другое.

Пример 5. Стрелок произвел выстрел по мишени. Обязательно произойдет одно из следующих событий: попадание в «десятку», в «девятку», в «восьмерку»,.. ,в «единицу» или промах. Эти 11 несовместных событий образуют полную группу.

Пример 6. На экзамене в Вузе студент может получить одну из следующих четырех оценок: 2, 3, 4 или 5. Эти четыре несовместных события также образуют полную группу.

Если несовместные события А1, А2 … А k образуют полную группу, то сумма вероятностей этих событий всегда равна единице:

Р (А1 ) + Р (А2 )+ … Р (А k ) = 1, (5)

Это утверждение часто используется при решении многих прикладных задач.

Если два события единственно возможны и несовместны, то их называют противоположными и обозначают А и . Такие события составляют полную группу, поэтому сумма их вероятностей всегда равна единице:

Р (А ) + Р () = 1. (6)

Пример 7. Пусть Р (А ) – вероятность летального исхода при некотором заболевании; она известна и равна 2%. Тогда вероятность благополучного исхода при этом заболевании равна 98% (Р () = 1 – Р (А ) = 0,98), так как Р (А ) + Р () = 1.

1.3.2. Независимые случайные события. Теорема умножения вероятностей

Случайные события называются независимыми, если появление одного из них никак не влияет на вероятность появления других событий.

Пример 1. Если есть две или более урны с цветными шарами, то извлечение какого-либо шара из одной урны никак не повлияет на вероятность извлечения других шаров из оставшихся урн.

Для независимых событий справедлива теорема умножения вероятностей: вероятность совместного (одновременного ) появления нескольких независимых случайных событий равна произведению их вероятностей:

Р(А1и А2 и А3 … и А k ) = Р(А1) ∙Р(А2) ∙…∙Р(А k ). (7)

Совместное (одновременное) появление событий означает, что происходят события и А1, и А2 , и А3 … и А k .

Пример 2. Есть две урны. В одной находится 2 черных и 8 белых шаров, в другой – 6 черных и 4 белых. Пусть событие А –выбор наугад белого шара из первой урны, В – из второй. Какова вероятность выбрать наугад одновременно из этих урн по белому шару, т. е. чему равна Р (А и В )?

Решение: вероятность достать белый шар из первой урны
Р (А ) = = 0,8 из второй – Р (В ) = = 0,4. Вероятность одновременно достать по белому шару из обеих урн –
Р (А и В ) = Р (А Р (В ) = 0,8∙ 0,4 = 0,32 = 32%.

Пример 3. Рацион с пониженным содержанием йода вызывает увеличение щитовидной железы у 60% животных большой популяции. Для эксперимента нужны 4 увеличенных железы. Найдите вероятность того, что у 4 случайно выбранных животных будет увеличенная щитовидная железа.

Решение : Случайное событие А – выбор наугад животного с увеличенной щитовидной железой. По условию задачи вероятность этого события Р (А ) = 0,6 = 60%. Тогда вероятность совместного появления четырех независимых событий – выбор наугад 4 животных с увеличенной щитовидной железой – будет равна:

Р (А 1 и А 2 и А 3 и А 4) = 0,6 ∙ 0,6 ∙0,6 ∙ 0,6=(0,6)4 ≈ 0,13 = 13%.

1.3.3. Зависимые события. Теорема умножения вероятностей для зависимых событий

Случайные события А и В называются зависимыми, если появление одного из них, например, А изменяет вероятность появления другого события – В. Поэтому для зависимых событий используются два значения вероятности: безусловная и условная вероятности.

Если А и В зависимые события, то вероятность наступления события В первым (т. е. до события А ) называется безусловной вероятностью этого события и обозначается Р (В ). Вероятность наступления события В при условии, что событие А уже произошло, называется условной вероятностью события В и обозначается Р (В /А ) или РА (В).

Аналогичный смысл имеют безусловная – Р (А ) и условная – Р (А/В ) вероятности для события А.

Теорема умножения вероятностей для двух зависимых событий: вероятность одновременного наступления двух зависимых событий А и В равна произведению безусловной вероятности первого события на условную вероятность второго:

Р (А и В ) = Р (А ) ∙Р (В/А ) , (8)

А , или

Р (А и В ) = Р (В ) ∙Р (А/В), (9)

если первым наступает событие В .

Пример 1. В урне 3 черных шара и 7 белых. Найдите вероятность того, что из этой урны один за другим (причем первый шар не возвращают в урну) будут вынуты 2 белых шара.

Решение : вероятность достать первый белый шар (событие А ) равна 7/10. После того как он вынут, в урне остается 9 шаров, из них 6 белых. Тогда вероятность появления второго белого шара (событие В ) равна Р (В /А ) = 6/9, а вероятность достать подряд два белых шара равна

Р (А и В ) = Р (А )∙Р (В /А ) = = 0,47 = 47%.

Приведенная теорема умножения вероятностей для зависимых событий допускает обобщение на любое количество событий. В частности, для трех событий, связанных друг с другом:

Р (А и В и С ) = Р (А ) ∙ Р (В/А ) ∙ Р (С/АВ ). (10)

Пример 2. В двух детских садах, каждый из которых посещает по 100 детей, произошла вспышка инфекционного заболевания. Доли заболевших составляют соответственно 1/5 и 1/4, причем в первом учреждении 70 %, а во втором – 60 % заболевших – дети младше 3-х лет. Случайным образом выбирают одного ребенка. Определите вероятность того, что:

1) выбранный ребенок относится к первому детскому саду (событие А ) и болен (событие В ).

2) выбран ребенок из второго детского сада (событие С ), болен (событие D ) и старше 3-х лет (событие Е ).

Решение . 1) искомая вероятность –

Р (А и В ) = Р (А ) ∙ Р (В /А ) = = 0,1 = 10%.

2) искомая вероятность:

Р (С и D и Е ) = Р (С ) ∙ Р (D /C ) ∙ Р (Е /CD ) = = 5%.

1.4. Формула Байеса

Если вероятность совместного появления зависимых событий А и В не зависит от того, в каком порядке они происходят, то Р (А и В ) = Р (А ) ∙Р (В/А ) = Р (В ) × Р (А/В ). В этом случае условную вероятность одного из событий можно найти, зная вероятности обоих событий и условную вероятность второго:

Р (В/А ) = (11)

Обобщением данной формулы на случай многих событий является формула Байеса.

Пусть «n » несовместных случайных событий Н1, Н2, …, Н n , образуют полную группу событий. Вероятности этих событий – Р (Н1 ), Р (Н2 ), …, Р (Н n ) известны и так как они образуют полную группу, то = 1.

Некоторое случайное событие А связано с событиями Н1, Н2, …, Н n , причем известны условные вероятности появления события А с каждым из событий Н i , т. е. известны Р (А/Н1 ), Р (А/Н2 ), …, Р (А/Н n ). При этом сумма условных вероятностей Р (А/Н i ) может быть не равна единице т. е. ≠ 1.

Тогда условная вероятность появления события Н i при реализации события А (т. е. при условии, что событие А произошло) определяется формулой Байеса:

Причем для этих условных вероятностей .

Формула Байеса нашла широкое применение не только в математике, но и в медицине. Например, она используется для вычисления вероятностей тех или иных заболеваний. Так, если Н 1,…, Н n – предполагаемые диагнозы для данного пациента, А – некоторый признак, имеющий отношение к ним (симптом, определенный показатель анализа крови, мочи, деталь рентгенограммы и т. д.), а условные вероятности Р (А/Н i ) проявления этого признака при каждом диагнозе Н i (i = 1,2,3,…n ) заранее известны, то формула Байеса (12) позволяет вычислить условные вероятности заболеваний (диагнозов) Р (Н i ) после того как установлено, что характерный признак А присутствует у пациента.

Пример1. При первичном осмотре больного предполагаются 3 диагноза Н 1, Н 2, Н 3. Их вероятности, по мнению врача, распределяются так: Р (Н 1) = 0,5; Р (Н 2) = 0,17; Р (Н 3) = 0,33. Следовательно, предварительно наиболее вероятным кажется первый диагноз. Для его уточнения назначается, например, анализ крови, в котором ожидается увеличение СОЭ (событие А ). Заранее известно (на основании результатов исследований), что вероятности увеличения СОЭ при предполагаемых заболеваниях равны:

Р (А /Н 1) = 0,1; Р (А /Н 2) = 0,2; Р (А /Н 3) = 0,9.

В полученном анализе зафиксировано увеличение СОЭ (событие А произошло). Тогда расчет по формуле Байеса (12) дает значения вероятностей предполагаемых заболеваний при увеличенном значении СОЭ: Р (Н 1/А ) = 0,13; Р (Н 2/А ) = 0,09;
Р (Н 3/А ) = 0,78. Эти цифры показывают, что с учетом лабораторных данных наиболее реален не первый, а третий диагноз, вероятность которого теперь оказалась достаточно большой.

Приведенный пример – простейшая иллюстрация того, как с помощью формулы Байеса можно формализовать логику врача при постановке диагноза и благодаря этому создать методы компьютерной диагностики.

Пример 2. Определите вероятность, оценивающую степень риска перинатальной* смертности ребенка у женщин с анатомически узким тазом.

Решение : пусть событие Н 1 – благополучные роды. По данным клинических отчетов, Р (Н 1) = 0,975 = 97,5 %, тогда, если Н2 – факт перинатальной смертности, то Р (Н 2) = 1 – 0,975 = 0,025 = 2,5 %.

Обозначим А – факт наличия узкого таза у роженицы. Из проведенных исследований известны: а) Р (А /Н 1) – вероятность узкого таза при благоприятных родах, Р (А /Н 1) = 0,029, б) Р (А /Н 2) – вероятность узкого таза при перинатальной смертности,
Р (А /Н 2) = 0,051. Тогда искомая вероятность перинатальной смертности при узком тазе у роженицы рассчитывается по формуле Байса (12) и равна:


Таким образом, риск перинатальной смертности при анатомически узком тазе значительно выше (почти вдвое) среднего риска (4,4 % против 2,5 %).

Подобные расчеты, обычно выполняемые с помощью компьютера, лежат в основе методов формирования групп пациентов повышенного риска, связанного с наличием того или иного отягощающего фактора.

Формула Байеса очень полезна для оценки многих других медико-биологических ситуаций, что станет очевидным при решении приведенных в пособии задач.

1.5. О случайных событиях с вероятностями близкими к 0 или к 1

При решении многих практических задач приходится иметь дело с событиями, вероятность которых очень мала, т. е. близка к нулю. На основании опыта в отношении таких событий принят следующий принцип. Если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании оно не наступит, иначе говоря, возможностью его появления можно пренебречь. Ответ на вопрос, насколько малой должна быть эта вероятность, определяется существом решаемых задач, тем, насколько важен для нас результат предсказания. Например, если вероятность того, что парашют при прыжке не раскроется равна 0,01, то применение таких парашютов недопустимо. Однако равная той же 0,01 вероятность того, что поезд дальнего следования прибудет с опозданием, делает нас практически уверенными в том, что он прибудет вовремя.

Достаточно малую вероятность, при которой (в данной конкретной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно принимают равным 0,01 (однопроцентный уровень значимости) или 0,05 (пятипроцентный уровень значимости), намного реже он берется равным 0,001.

Введение уровня значимости позволяет утверждать, что если некоторое событие А практически невозможно, то противоположное событие - практически достоверно, т. е. для него Р () » 1.

Глава II . СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

2.1. Случайные величины, их виды

В математике величина – это общее название различных количественных характеристик предметов и явлений. Длина, площадь, температура, давление и т. д. – примеры разных величин.

Величина, которая принимает различные числовые значения под влиянием случайных обстоятельств, называется случайной величиной . Примеры случайных величин: число больных на приеме у врача; точные размеры внутренних органов людей и т. д.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает только определенные отделенные друг от друга значения, которые можно установить и перечислить.

Примерами дискретной случайной величиной являются:

– число студентов в аудитории – может быть только целым положительным числом: 0,1,2,3,4….. 20…..;

– цифра, которая появляется на верхней грани при бросании игральной кости – может принимать лишь целые значения от 1 до 6;

– относительная частота попадания в цель при 10 выстрелах – ее значения: 0; 0,1; 0,2; 0,3 …1

– число событий, происходящих за одинаковые промежутки времени: частота пульса, число вызовов скорой помощи за час, количество операций в месяц с летальным исходом и т. д.

Случайная величина называется непрерывной, если она может принимать любые значения внутри определенного интервала, который иногда имеет резко выраженные границы, а иногда – нет *. К непрерывным случайным величинам относятся, например, масса тела и рост взрослых людей, масса тела и объем мозга, количественное содержание ферментов у здоровых людей, размеры форменных элементов крови, р Н крови и т. п.

Понятие случайной величины играет определяющую роль в современной теории вероятностей, разработавшей специальные приемы перехода от случайных событий к случайным величинам.

Если случайная величина зависит от времени, то можно говорить о случайном процессе.

2.2. Закон распределения дискретной случайной величины

Чтобы дать полную характеристику дискретной случайной величины необходимо указать все ее возможные значения и их вероятности.

Соответствие между возможными значениями дискретной случайной величины и их вероятностями называется законом распределения этой величины.

Обозначим возможные значения случайной величины Х через х i , а соответствующие им вероятности – через р i *. Тогда закон распределения дискретной случайной величины можно задать тремя способами: в виде таблицы, графика или формулы.

В таблице, которая называется рядом распределения, перечисляются все возможные значения дискретной случайной величины Х и соответствующие этим значениям вероятности Р (Х ):

Х

…..

…..

P (X )

…..

…..

При этом сумма всех вероятностей р i должна быть равна единице (условие нормировки):

р i = p 1 + p 2 + ... + pn = 1. (13)

Графически закон представляется ломаной линией, которую принято называть многоугольником распределения (рис.1). Здесь по горизонтальной оси откладывают все возможные значения случайной величины х i , , а по вертикальной оси – соответствующие им вероятности р i

Аналитически закон выражается формулой. Например, если вероятность попадания в цель при одном выстреле равна р, то вероятность поражения цели 1 раз при n выстрелах дается формулой Р (n ) = n qn -1 × p , где q = 1 – р – вероятность промаха при одном выстреле.

2.3. Закон распределения непрерывной случайной величины. Плотность распределения вероятности

Для непрерывных случайных величин невозможно применить закон распределения в формах, приведенных выше, поскольку такая величина имеет бесчисленное («несчетное») множество возможных значений, сплошь заполняющих некоторый интервал. Поэтому составить таблицу, в которой были бы перечислены все ее возможные значения, или построить многоугольник распределения нельзя. Кроме того, вероятность какого-либо ее конкретного значения очень мала (близка к 0)*. Вместе с тем различные области (интервалы) возможных значений непрерывной случайной величины не равновероятны. Таким образом, и в данном случае действует некий закон распределения, хотя и не в прежнем смысле.

Рассмотрим непрерывную случайную величину Х , возможные значения которой сплошь заполняют некий интервал , b )**. Закон распределения вероятностей такой величины должен позволить найти вероятность попадания ее значения в любой заданный интервал (х1, х2 ), лежащий внутри (а, b ), рис.2.

Эту вероятность обозначают Р (х1 < Х < х2 ), или
Р (х1 £ Х £ х2 ).

Рассмотрим сначала очень малый интервал значений Х – от х до (х + D х ); см. рис.2. Малая вероятность d Р того, что случайная величина Х примет какое-то значение из интервала (х, х + D х ), будет пропорциональна величине данного интервала D х: d Р ~ D х , или, введя коэффициент пропорциональности f , который сам может зависеть от х , получим:

d Р = f (х ) × Dх = f (x ) × dx (14)

Введенная здесь функция f (х ) называется плотностью распределения вероятностей случайной величины Х, или, короче, плотностью вероятности , плотностью распределения . Уравнение (13) – дифференциальное уравнение, решение которого дает вероятность попадания величины Х в интервал (х1 , х2) :

Р (х1 < Х < х2 ) = f (х ) d х. (15)

Графически вероятность Р (х1 < Х < х2 ) равна площади криволинейной трапеции, ограниченной осью абсцисс, кривой f (х ) и прямыми Х = х1 и Х = х2 (рис.3). Это следует из геометрического смысла определенного интеграла (15) Кривая f (х ) при этом называется кривой распределения.

Из (15) следует, что если известна функция f (х ), то, изменяя пределы интегрирования, можно найти вероятность для любых интересующих нас интервалов. Поэтому именно задание функции f (х ) полностью определяет закон распределения для непрерывных случайных величин.

Для плотности вероятности f (х ) должно выполняться условие нормировки в виде:

f (х ) d х = 1, (16)

если известно, что все значения Х лежат в интервале (а, b ), или в виде:

f (х ) d х = 1 , (17)

если границы интервала для значений Х точно неопределенны. Условия нормировки плотности вероятности (16) или (17) являются следствием того, что значения случайной величины Х достоверно лежат в пределах (а, b ) или (-¥, +¥). Из (16) и (17) следует, что площадь фигуры, ограниченной кривой распределения и осью абсцисс, всегда равна 1.

2.4. Основные числовые характеристики случайных величин

Результаты, изложенные в параграфах 2.2 и 2.3, показывают, что полную характеристику дискретной и непрерывной случайных величин можно получить, зная законы их распределения. Однако во многих практически значимых ситуациях пользуются так называемыми числовыми характеристиками случайных величин, главное назначение этих характеристик – выразить в сжатой форме наиболее существенные особенности распределения случайных величин. Важно, что данные параметры представляют собой конкретные (постоянные) значения, которые можно оценивать с помощью полученных в опытах данных. Этими оценками занимается «Описательная статистика».

В теории вероятностей и математической статистике используется достаточно много различных характеристик, но мы рассмотрим только наиболее употребляемые. Причем лишь для части из них приведем формулы, по которым рассчитываются их значения, в остальных случаях вычисления оставим компьютеру.

Рассмотрим характеристики положения – математическое ожидание, моду, медиану.

Они характеризуют положение случайной величины на числовой оси, т. е. указывают некоторое ориентировочное значение, около которого группируются все возможные значения случайной величины. Среди них важнейшую роль играет математическое ожидание М (Х ).

Поделиться