Состав атомного ядра. Массовое число.Зарядовое число. Ядерные силы. Атомное ядро: строение, масса, состав А - массовое число

Изучая состав вещества, ученые пришли к выводу, что вся материя состоит из молекул и атомов. Долгое время атом (в переводе с греческого "неделимый") считался наименьшей конструкционной единицей вещества. Однако дальнейшие исследования показали, что атом имеет сложное строение и, в свою очередь, включает более мелкие частицы.

Из чего состоит атом?

В 1911 году ученый Резерфорд высказал предположение, что в атоме имеется центральная часть, обладающая положительным зарядом. Так впервые появилось понятие об атомном ядре.

По схеме Резерфорда, названной планетарной моделью, атом состоит из ядра и элементарных частиц с отрицательным зарядом - электронов, движущихся вокруг ядра, подобно тому, как планеты обращаются по орбите вокруг Солнца.

В 1932 году другой ученый, Чедвик, открыл нейтрон - частицу, не имеющую электрического заряда.

Согласно современным представлениям, ядра соответствует планетарной модели, предложенной Резерфордом. Ядро несет в себе большую часть атомной массы. Также оно имеет положительный заряд. В атомном ядре находятся протоны - положительно заряженные частицы и нейтроны - частицы, не несущие заряда. Протоны и нейтроны называются нуклонами. Отрицательно заряженные частицы - электроны - движутся по орбите вокруг ядра.

Количество протонов в ядре равняется движущихся по орбите. Следовательно, сам атом является частицей, не несущей заряда. Если атом захватит чужие электроны или потеряет свои, то он становится положительным или отрицательным и называется ионом.

Электроны, протоны и нейтроны обобщенно называют субатомными частицами.

Заряд атомного ядра

Ядро имеет зарядовое число Z. Оно определяется количеством протонов, входящих в состав атомного ядра. Узнать это количество просто: достаточно обратиться к периодической системе Менделеева. Порядковый номер элемента, которому принадлежит атом, равняется количеству протонов в ядре. Таким образом, если химическому элементу кислороду соответствует порядковый номер 8, то количество протонов тоже будет равняться восьми. Поскольку число протонов и электронов в атоме совпадает, то электронов тоже будет восемь.

Количество нейтронов называют изотопическим числом и обозначают буквой N. Их число может различаться в атоме одного и того же химического элемента.

Сумма протонов и электронов в ядре называется массовым числом атома и обозначается буквой А. Таким образом, формула подсчета массового числа выглядит так: А=Z+N.

Изотопы

В случае, когда элементы имеют равное количество протонов и электронов, но разное число нейтронов, их называют изотопами химического элемента. Изотопов может быть один или несколько. Они помещаются в одну и ту же ячейку периодической системы.

Изотопы имеют большое значение в химии и физике. Например, изотоп водорода - дейтерий - в сочетании с кислородом дает совершенно новую субстанцию, которую называют тяжелой водой. Она имеет иную температуру кипения и замерзания, чем обычная. А сочетание дейтерия с другим изотопом водорода - тритием приводит к термоядерной реакции синтеза и может использоваться для выработки огромного количества энергии.

Масса ядра и субатомных частиц

Размеры и масса атомов и ничтожно малы в представлениях человека. Размер ядер составляется примерно 10 -12 см. Массу атомного ядра измеряют в физике в так называемых атомных единицах массы - а.е.м.

За одну а.е.м. принимают одну двенадцатую часть массы атома углерода. Используя привычные единицы измерения (килограммы и граммы), массу можно выразить следующим равенством: 1 а.е.м. = 1,660540·10 -24 г. Выраженная таким образом, она называется абсолютной атомной массой.

Несмотря на то, что атомное ядро является самой массивной составляющей атома, его размеры относительно электронного облака, окружающего его, чрезвычайно малы.

Ядерные силы

Атомные ядра являются чрезвычайно устойчивыми. Это значит, что протоны и нейтроны удерживаются в ядре какими-то силами. Это не могут быть электромагнитные силы, поскольку протоны являются одноименно заряженными частицами, а известно, что частицы, обладающие одинаковым зарядом, отталкиваются друг от друга. Гравитационные силы же слишком слабы, чтобы удержать нуклоны вместе. Следовательно, частицы удерживаются в ядре иным взаимодействием - ядерными силами.

Ядерное взаимодействие считается самым сильным из всех существующих в природе. Поэтому данный тип взаимодействия между элементами атомного ядра называют сильным. Оно присутствует у множества элементарных частиц, как и электромагнитные силы.

Особенности ядерных сил

  1. Короткодействие. Ядерные силы, в отличие от электромагнитных, проявляются лишь на очень малых расстояниях, сопоставимых с размерами ядра.
  2. Зарядовая независимость. Данная особенность проявляется в том, что ядерные силы действуют одинаково на протоны и нейтроны.
  3. Насыщение. Нуклоны ядра взаимодействуют лишь с определенным числом других нуклонов.

Энергия связи ядра

С понятием сильного взаимодействия тесно связано другое - энергия связи ядер. Под энергией ядерной связи понимают то количество энергии, которое требуется, чтобы разделить атомное ядро на составляющие его нуклоны. Она равняется энергии, необходимой для формирования ядра из отдельных частиц.

Для вычисления энергии связи ядра необходимо знать массу субатомных частиц. Вычисления показывают, что масса ядра всегда меньше, чем сумма входящих в его состав нуклонов. Дефектом массы называют разницу между массой ядра и суммой его протонов и электронов. При помощи о связи массы и энергии (Е=mc 2) можно вычислить энергию, выработанную при образовании ядра.

О силе энергии связи ядра можно судить по следующему примеру: при образовании нескольких граммов гелия вырабатывается столько же энергии, сколько при сгорании нескольких тонн каменного угля.

Ядерные реакции

Ядра атомов могут взаимодействовать с ядрами других атомов. Такие взаимодействия называются ядерными реакциями. Реакции бывают двух типов.

  1. Реакции деления. Они происходят, когда более тяжелые ядра в результате взаимодействия распадаются на более легкие.
  2. Реакции синтеза. Процесс, обратный делению: ядра сталкиваются, тем самым образуя более тяжелые элементы.

Все ядерные реакции сопровождаются выбросом энергии, которая впоследствии используется в промышленности, в военной сфере, в энергетике и так далее.

Ознакомившись с составом атомного ядра, можно сделать следующие выводы.

  1. Атом состоит из ядра, содержащего протоны и нейтроны, и электронов, находящихся вокруг него.
  2. Массовое число атома равняется сумме нуклонов его ядра.
  3. Нуклоны удерживаются сильным взаимодействием.
  4. Огромные силы, придающие атомному ядру стабильность, называются энергиями связи ядра.

Ядро атома состоит из нуклонов, которые подразделяются на протоны и нейтроны.

Символическое обозначение ядра атома:

А- число нуклонов, т.е. протонов + нейтронов (или атомная масса)
Z- число протонов (равно числу электронов)
N- число нейтронов (или атомный номер)

ЯДЕРНЫЕ СИЛЫ

Действуют между всеми нуклонами в ядре;
- силы притяжения;
- короткодействующие

Нуклоны притягиваются друг к другу ядерными силами, которые совершенно непохожи ни на гравитационные, ни на электростатические. . Ядерные силы очень быстро спадают с расстоянием. Радиус их действия порядка 0,000 000 000 000 001 метра.
Для этой сверхмалой длины, характеризующей размеры атомных ядер, ввели специальное обозначение - 1 Фм (в честь итальянского физика Э. Ферми, 1901-1954). Все ядра имеют размеры нескольких ферми. Радиус ядерных сил равен размеру нуклона, поэтому ядра - сгустки очень плотной материи. Возможно, самой плотной в земных условиях.
Ядерные силы - сильные взаимодействия. Они многократно превосходят кулоновскую силу (на одинаковом расстоянии). Короткодействие ограничивает действие ядерных сил. С ростом числа нуклонов ядра становятся неустойчивыми, и поэтому большинство тяжелых ядер радиоактивны, а совсем тяжелые вообще не могут существовать.
Конечное число элементов в природе - следствие короткодействия ядерных сил.



Строение атома - Класс!ная физика

Знаете ли вы?

В середине XX века теория ядра предсказала существование стабильных элементов с порядковыми номерами Z = =110 -114.
В Дубне был получен 114-й элемент с атомной массой А = 289, который "жил" всего 30 секунд, что невероятно долго для атома с ядром такого размера.
Сегодня теоретики уже обсуждают свойства сверхтяжелых ядер массой 300 и даже 500.

Атомы с одинаковыми атомными номерами называют изотопами: в таблице Менделеева
они расположены в одной клеточке (по-гречески изос - равный, топос - место).
Химические свойства изотопов почти тождественны.
Если элементов всего в природе - около 100, то изотопов - более 2000. Многие из них неустойчивы, то есть радиоактивны, и распадаются, испуская различные виды излучений.
Изотопы одного и того же элемента по составу отличаются лишь количеством нейтронов в ядре.


Изотопы водорода.

Если удалить пространство из всех атомов человеческого тела, то то, что останется, сможет пролезть в игольное ушко.


Любознательным

«Глиссирующие» автомобили

Если, двигаясь на автомобиле по мокрой дороге с большой скоростью, резко затормозить, то автомобиль поведет себя как глиссер; шины его начнут скользить по тонкой пленке воды, практически не касаясь дороги. Почему это происходит? Почему автомобиль не всегда скользит на мокрой дороге, даже если тормоз не нажат? Существует ли такой рисунок протектора, который уменьшает этот эффект?

Оказывается...
Предлагалось несколько рисунков протектора, уменьшающего вероятность «аквапланирования». Например, канавка может отводить воду к задней точке контакта протектора с дорогой, откуда вода будет выбрасываться наружу. По другим, более мелким канавкам вода может отводиться в стороны. Наконец, небольшие углубления на протекторе могут как бы «промокать» водяной слой на дороге, прикасаясь к нему непосредственно перед зоной основного контакта протектора с дорожным покрытием. Во всех случаях задача состоит в том, чтобы как можно скорее убрать воду из зоны контакта и не допустить аквапланирования.

Тема: Состав атомного ядра. Ядерные силы.

Цель урока: познакомить учащихся с особенностями строения атомного ядра.

Задачи урока:

Образовательные:

} Повторить, обобщить и углубить знания о составе атомных ядер;

} Сформировать понятие «изотопы веществ»;

} Сформировать понятие «ядерная сила»;

} Изучить свойства ядерных сил;

Развивающие:

} Развить умения совершать мыслительные операции: анализ, синтез, систематизацию, сравнение, конкретизация;

} Развивать интерес к физике;

} Показать связь теоретических знаний с практикой;

} Научить пользоваться Периодической системой Менделеева для определения состава атомного ядра;

} Продолжить формирование умения применять теоретические знания при решении задач;

} Способствовать развитию гибкого мышления учащихся;

} Способствовать развитию у учащихся внимания;

Воспитывающие:

} Воспитание целостной картинки мира;

} Воспитать умение использовать знания, полученные учащимися при изучении других предметов.

Оборудование: Периодическая система Менделеева, презентация к уроку, раздаточный материал.

Эпиграф к уроку:

«Ум заключается не только в знании, но и в умении прилагать знание на деле»

Аристотель.


Ход урока.

I. Организационный момент.

Древнегреческий философ Аристотель сказал «Ум заключается не только в знании, но и в умении прилагать знание на деле». Пусть эти слова, сказанные еще в 4 веке до нашей эры, станут девизом нашего сегодняшнего урока.(Слайд 1)

II. Этап проверки домашнего задания

Фронтальный опрос:

1. Кто первый выдвинул гипотезу о том, что в состав атомных ядер всех химических элементов входит ядро атома водорода ? (английский физик Эрнест Резерфорд)

2. В каком году были получены факты подтверждающие справедливость данной гипотезы? (В 1919 г при наблюдении взаимодействия α – частиц с ядрами атомов азота)

3. Как иначе называется ядро атома водорода? (протон от греческого слова protos – первый)

4. Благодаря изобретению, какого прибора окончательно было доказано существование протона? (камера Вильсона)

5. Запишите на доске символьное обозначение протона (11Н, 11р)

6. О существовании, каких частиц входящих в атомное ядро в 1920 году выдвинул предположение Эрнест Резерфорд? (нейтрон)

7. Кем и когда данное предположение было доказано? (в 1932 г - английский физик Джеймс Чедвиг (ученик Резерфорда))

8. Запишите на доске символьное обозначение нейтрон (10n).

Возьмите оценочные листы (Приложение 1)и поставьте себе оценку за данный этап урока

III. Этап изучения нового материала.

1.Каждый должен хотя бы в общих чертах представлять, как устроен мир, в котором он живет. Поэтому важно знать, что мир познаваем, что по мере углубления знаний картина мира усложняется.

Ребята, как вы думаете, очём мы будем сегодня говорить на уроке?

А я думаю, что мы будем изучать строение атома.)

Да мы продолжим работу по изучению строения атомного ядра. Тема нашего урока: «Строение атомного ядра. Ядерные силы». Запишите тему урока в тетради (Слайд 2).

Давайте попробуем определить цели и задачи урока.

(Изучить строение атомных ядер. Какие силы удерживают частицы, из которых состоят ядра) (Слайд 3)

В истории современной физики есть год, который называют «годом чудес». Это 1932 год. Одним из его «чудес» было открытие нейтрона и создание нейтронно - протонной модели атомного ядра (советскими физиками – и Гапоном; немецким физиком – Вернером Гейзенбергом; итальянским физиком – Майораном).

Ядро имеет форму шара R ≈ 10-15 м, в нем сконцентрировано приблизительно 99,96% всей массы атома, ρ = 2,7∙1017 кг/м³.

Протон: р (1919 г), время жизни 10³¹ лет, m = 1836,2me, qp = +e

Нейтрон: n, q=0, время жизни вне ядра 15 мин, m=1838,7me

О составе атомного ядра нам подготовил сообщение Скоробогатько Вадим.

Обе эти частицы часто называют еще нуклонами.(Слайд 4.)

Любой химический элемент обозначается условно – Х (Слайд 5).

Число частиц входящих в состав атомного ядра называется массовым числом и обозначается A. (Слайд 6).

Число протонов в ядре называется зарядовым числом и обозначается Z. (Слайд 7)

Число нейтронов входящих в состав ядра обозначается N.


A= N + Z (Слайд 8).

2.Дальнейшее исследование атомных ядер привело к обнаружению того, что у одного и того же химического элемента атомы могут иметь ядра разной массы.

Причем все эти атомы обладали одинаковыми химическими свойствами, а, следовательно, имеют одинаковый заряд ядра. Если заряды ядер одинаковы, значит, имеют один и тот же порядковый номер в таблице, т. е. занимают в таблице одну и туже клетку.

(Слайд 9). Все разновидности одного химического элемента назвали изотопами.

Сейчас уже экспериментально доказано, что почти все химические элементы имеют изотопы.

Например:

11Н - протий

21Н - дейтерий

31Н – тритий.

Наличие, каких частиц входящих состав ядра различно для изотопов? (нейтронов)

Именно наличие, различного числа нейтронов в ядрах изотопов является причинной различных физических свойств химических веществ, которые более подробно будут изучены в 11 классе .

3.Гипотеза о протонно – нейтронном составе атомного ядра подтвердилась, но возникает следующий вопрос: почему ядро не распадается на отдельные частицы?

Чтобы ответить на поставленный вопрос вспомним ранее изученный материал:

Между всеми телами имеющими массу существует взаимное притяжение. Сила тяготения рассчитывается по закону всемирного тяготения: F=Gm1m2/r2.

Протоны, входящие в состав ядра обладают положительным зарядом, а значит, между ними возникает отталкивание, к тому же сила электрического отталкивания в 1039 раз больше чем сила гравитационного притяжения. Только из этого факта можно сделать вывод, что между частицами входящими в состав ядра возникает взаимодействие еще более сильное, чем электрическое, иначе протоны, входящие в состав ядра разлетелись с огромной скоростью.

Ученые пришли к выводу, что в природе существует еще один вид взаимодействия, которое было названо сильным.

(Слайд 10). Силы притяжения между частицами входящими в состав ядра назвали ядерными.

(Слайд 11). Свойства ядерных сил:

Ø являются только силами притяжения;

Ø во много раз больше кулоновских сил;

Ø не зависят от наличия заряда;

Ø короткодействующие: заметны на расстоянии r ≈ 2,2∙10 -15 м;

Ø взаимодействуют с ограниченным числом нуклонов (свойство насыщения).

https://pandia.ru/text/80/367/images/image003_45.gif" width="31" height="13">0 " style="border-collapse:collapse;border:none">

Название вещества

Массовое число, A

Зарядовое число, Z

Число нейтронов, N

Германий

Проверьте как вы выполнили задание и поставьте себе оценку в оценочном листе за данный вид работы.

2.Слайд 14. Определить недостающий химический элемент.

Слайд 15. Проверьте как вы выполнили задание и поставьте себе оценку в оценочном листе за данный вид работы.

Mg

Na

Li

C

O

3.Составьте вопросы к кроссворду(1 вариант – к словам расположенным по горизонтали, 2 вариант – к словам расположенным по вертикали) (Приложение 1)

Поставьте себе оценку в оценочном листе за данный вид работы.

VI. Подведение итогов урока

Закончите фразу:

1. Атом любого химического элемента состоит из…

2. Ядро любого химического элемента состоит из…

3. Сумму протонов и нейтронов называют …, в периодической системе массовое число равно….

4. В периодической системе число протонов в ядре равно …, и называется ….

5. Число нейтронов в ядре равно … (разности массового и зарядового числа)

6. Протоны и нейтроны удерживаются в ядре …. (ядерными силами)

7. Изотопы – это… (разновидности одного и того же химического элемента, различающиеся по массе атомных ядер).

8. Энергия связи – это… (энергия, необходимая для расщепления ядра на отдельные нуклоны).

9. Ядерной реакцией называется … (изменение атомных ядер при взаимодействии их с элементарными частицами или друг с другом).

Какаие вы ставили перед собой цели и удалось ли вам их достичь? Выставьте себе оценку в оценочном листе за данный вид работы.

Подсчитайте среднюю оценку за урок.

VII. Слайд 17. Д/з: §61, 62 упр. 45 (учебник: ,)

VIII. Рефлексия.

Продолжите фразу

Сегодня на уроке

} Я почувствовал …
Я понял …
Я буду …

Физика наука о природе - показывает нам как велик мир в котором мы живем, но этот мир познаваем, а значит, физика дает человеку необыкновенную силу.

Из мысли о мельчайших частицах, в конце концов, появились все блага, которыми мы сегодня располагаем: новые материалы, телевизоры, лазер, компьютер. А главная идея о мельчайших частицах помогла понять мир с единой точки зрения.

Ребята, наш урок подошел к концу. Мне бы хотелось его закончить словами пословицы «Не стыдно не знать, стыдно не учиться!». А сколько еще непознанного вокруг! Какое поле деятельности для пытливого ума. Так что запускайте свой «вечный двигатель», и вперед!

Приложение 1.

Оценочный лист__________________________________________________

Вид работы

Проверка домашней работы

Изучение нового материала

Закрепление

Подготовка к ГИА а)заполнение таблицы

Лекция 18. Элементы физики атомного ядра

План лекции

    Атомное ядро. Дефект массы, энергия связи ядра.

    Радиоактивное излучение и его виды. Закон радиоактивного распада.

    Законы сохранения при радиоактивных распадах и ядерных реакциях.

1.Атомное ядро. Дефект массы, энергия связи ядра.

Состав атомного ядра

Ядерная физика - наука о строении, свойствах и превращениях атомных ядер. В 1911 году Э. Резерфорд установил в опытах по рассеянию -частиц при их прохождении через вещество, что нейтральный атом состоит из компактного положительно заряженного ядра и отрицательного электронного облака. В. Гейзенберг и Д.Д. Иваненко (независимо) высказали гипотезу о том, что ядро состоит из протонов и нейтронов.

Атомное ядро - центральная массивная часть атома, состоящая из протонов и нейтронов, которые получили общее название нуклонов . В ядре сосредоточена почти вся масса атома (более 99,95%). Размеры ядер порядка 10 -13 - 10 -12 см и зависят от числа нуклонов в ядре. Плотность ядерного вещества как для легких, так и для тяжелых ядер почти одинакова и составляет около 10 17 кг/м 3 , т.е. 1 см 3 ядерного вещества весил бы 100 млн. т. Ядра имеют положительный электрический заряд, равный абсолютной величине суммарного заряда электронов в атоме.

Протон (символ p) - элементарная частица, ядро атома водорода. Протон обладает положительным зарядом, равным по величине заряду электрона. Масса протона m p = 1,6726 10 -27 кг = 1836 m e , где m e - масса электрона.

В ядерной физике принято выражать массы в атомных единицах массы:

1 а.е.м. = 1,65976 10 -27 кг.

Следовательно, масса протона, выраженная в а.е.м., равна

m p = 1,0075957 а.е.м.

Число протонов в ядре называется зарядовым числом Z. Оно равно атомному номеру данного элемента и, следовательно, определяет место элемента в периодической системе элементов Менделеева.

Нейтрон (символ n) - элементарная частица, не обладающая электрическим зарядом, масса которой незначительно больше массы протона.

Масса нейтрона m n = 1,675 10 -27 кг = 1,008982 а.е.м. Число нейтронов в ядре обозначается N.

Суммарное число протонов и нейтронов в ядре (число нуклонов) называется массовым числом и обозначается буквой А,

Для обозначения ядер применяется символ , где Х - химический символ элемента.

Изотопы - разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов (Z) и разное число нейтронов (N). Изотопами называют также ядра таких атомов. Изотопы занимают одно и то же место в периодической системе элементов. В качестве примера приведем изотопы водорода:

Понятие о ядерных силах.

Ядра атомов - чрезвычайно прочные образования, несмотря на то, что одноименно заряженные протоны, находясь на очень малых расстояниях в атомном ядре, должны с огромной силой отталкиваться друг от друга. Следовательно, внутри ядра действуют чрезвычайно большие силы притяжения между нуклонами, во много раз превышающие электрические силы отталкивания между протонами. Ядерные силы представляют собой особый вид сил, это самые сильные из всех известных взаимодействий в природе.

Исследования показали, что ядерные силы обладают следующими свойствами:

    ядерные силы притяжения действуют между любыми нуклонами, независимо от их зарядового состояния;

    ядерные силы притяжения являются короткодействующими: они действуют между любыми двумя нуклонами на расстоянии между центрами частиц около 2·10 -15 м и резко спадают при увеличении расстояния (при расстояниях более 3·10 -15 м они уже практически равны нулю);

    для ядерных сил характерна насыщенность, т.е. каждый нуклон может взаимодействовать только с ближайшими к нему нуклонами ядра;

    ядерные силы не являются центральными, т.е. они не действуют вдоль линии, соединяющей центры взаимодействующих нуклонов.

В настоящее время природа ядерных сил изучена не до конца. Установлено, что они являются так называемыми обменными силами. Обменные силы носят квантовый характер и не имеют аналога в классической физике. Нуклоны связываются между собой третьей частицей, которой они постоянно обмениваются. В 1935 г. японский физик Х. Юкава показал, что нуклоны обмениваются частицами, масса которых примерно в 250 раз больше массы электрона. Предсказанные частицы были обнаружены в 1947 г. английским ученым С. Пауэллом при изучении космических лучей и впоследствии названы -мезонами или пионами.

Взаимные превращения нейтрона и протона подтверждаются различными экспериментами.

Дефект масс атомных ядер. Энергия связи атомного ядра.

Нуклоны в атомном ядре связаны между собой ядерными силами, поэтому, чтобы разделить ядро на составляющие его отдельные протоны и нейтроны, необходимо затратить большую энергию.

Минимальная энергия, необходимая для разделения ядра на составляющие его нуклоны, называется энергией связи ядра . Такая же по величине энергия освобождается, если свободные нейтроны и протоны соединяются и образуют ядро.

Точные масс-спектроскопические измерения масс ядер показали, что масса покоя атомного ядра меньше суммы масс покоя свободных нейтронов и протонов, из которых образовалось ядро. Разность между суммой масс покоя свободных нуклонов, из которых образовано ядро, и массой ядра называется дефектом массы :

Этой разности масс m соответствует энергия связи ядра Е св , определяемая соотношением Эйнштейна:

или, подставив выражение для m , получим:

Энергию связи обычно выражают в мегаэлектронвольтах (МэВ). Определим энергию связи, соответствующую одной атомной единице массы (, скорость света в вакууме
):

Переведем полученную величину в электронвольты:

В связи с этим на практике удобнее пользоваться следующим выражением для энергии связи:

где множитель m выражен в атомных единицах массы.

Важной характеристикой ядра служит удельная энергия связи ядра, т.е. энергия связи, приходящаяся на нуклон:

.

Чем больше , тем сильнее связаны между собой нуклоны.

Зависимость величины  от массового числа ядра показана на рисунке 1. Как видно из графика, сильнее всего связаны нуклоны в ядрах с массовыми числами порядка 50-60 (Cr-Zn). Энергия связи для этих ядер достигает

Атомное ядро состоит из протонов и нейтронов. Число протонов определяет заряд ядра (порядковый номер в таблице Менделеева).

Масса ядра произвольного элемента определяется величиной, близкой к сумме масс протонов и нейтронов, входящих в его состав. Поэтому массовое число ядра, обозначаемое буквой А и выраженное в атомных единицах массы, округленно равно А = N + Z . Z – заряд ядра, определяет число протонов в ядре и число электронов в электронной оболочке нейтрального атома. N – число нейтронов в ядре. Протон и нейтрон имеют общее название – нуклон. Для обозначения ядра применяется символ , где Х является символом химического элемента. Например, , что означает Z = 82, N = 126, A = 208.

Различные комбинации чисел протонов и нейтронов соответствуют различным ядрам. При этом можно выделить следующие группы атомов.

Изотопы – атомы, ядра которых имеют одинаковое число протонов Zи различное число нейтронов N. Такие элементы занимают одно и то же место в периодической системе. Например, в природе распространена группа изотопов водорода: – легкий водород, – дейтерий и– тритий. Ядра изотопов водорода также имеют собственные названия: протон, дейтрон, тритон.

Изобары – атомы, ядра которых имеют одинаковое число A ().

Наряду с термином ядро атома используется термин нуклид.

Примерные размеры атомов и их составляющих:

размер ядра ~ 10 –14 м, размер нейтрона и протона ~10 –15 м, атома ~ 10 – 10 м, электрона < 10 –18 м.

Размер ядра характеризуется радиусом ядра, имеющий условный смысл, так как границы ядра размыты, как у любой квантовой системы. Экспериментально установлено, что в каждом ядре имеется внутренняя область, где плотность вещества постоянна. Эту область окружает поверхностный слой, где плотность вещества падает до нуля. Эмпирическая формула для радиуса ядра

1 Фм (фемтометр) =10 –15 м (1)

Это выражение может быть истолковано как пропорциональность объема ядра числу нуклонов в нем V ~ А. (1) означает независимость средней плотности ядра от массового числа.

Масса ядра выражается в атомных единицах массы или в МэВ/с 2 .

1а.е.м. =1/12 массы атома углерода с атомной массой 12,000. 1а.е.м. = 1,66×10 –27 кг » 931,5 МэВ/с 2 .

При образовании ядра из нуклонов происходит уменьшение его массы на величину Dm , которая называется дефектом масс.

Dm выражается в атомных единицах массы или в МэВ/с 2 .

Важной характеристикой ядра является энергия связи ядра W (A,Z ) – это энергия, которую необходимо затратить, чтобы разделить ядро на отдельные составляющие его протоны и нейтроны без сообщения им кинетической энергии.

W (A ,Z ) = Δтс 2 = [Zm p +(A – Z )m n M я (A ,Z )]·с 2 , (3)


Удельная энергия связи – средняя энергия, приходящаяся на 1 нуклон: . (4)

Для большинства ядер удельная энергия связи почти одинакова и ~ 8 МэВ. Поэтому полная энергия связи примерно пропорциональна массовому числу, т.е. числу нуклонов в ядре. Это говорит о свойстве ядерных сил, называемом насыщением. Оно заключается в том, что каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов.

Нуклоны в ядре удерживаются специфическими ядерными силами, которые являются проявлением сильного взаимодействия. Ядерные силы обладают следующими свойствами:

– являются короткодействующими, радиус их действия 10 –14 м;

– самые интенсивные, они на 2-3 порядка мощнее электромагнитных сил. Ядерные силы обеспечивают существование ядер с удельной энергией связи около 8 МэВ.

– Обладают свойством насыщения. Это проявляется в том, что в ядре протон может образовывать связанное состояние не более, чем с двумя нейтронами. По этой причине изотоп водорода тритий уже нестабилен.

– Обладают зарядовой независимостью, т. е. силы, действующие между протоном и нейтроном, протоном и протоном, нейтроном и нейтроном одинаковы. Это свойство не означает полную тождественность систем р – р, п – п, р – п, так как протоны и нейтроны являются фермионами и системы р – р, п – п состоят из тождественных частиц, а система р – п – из разных.

– Имеют обменный характер. При взаимодействии нуклоны могут обмениваться своими координатами, зарядами, проекциями спинов.

– Зависят от спина нуклонов. На эту зависимость указывает тот факт, что нет состояния дейтрона со спином 0. Т.е. спины протона и нейтрона в этом состоянии только параллельны.

– Являются нецентральными, т. е. зависят от ориентации спинов нуклонов относительно прямой , соединяющей нуклоны.

В 1935 г. японский физик Х. Юкава высказал гипотезу, что ядерное взаимодействие есть результат обмена нуклонов виртуальной частицей. Эти частицы должны иметь массу больше массы электрона, но меньше массы протона, поэтому их назвали мезонами. (От греч. mesos – промежуточный, средний). Мезоны стали искать экспериментально. В 1947 году они были обнаружены в космическом излучении. Эти частицы назвали пи-мезонами (от англ. рrimary – первичный). Сейчас эти частицы именуют более кратко – пионы. Пион существует в виде p 0 , p – , p + .

Пи-мезоны играют важную роль при нуклон-нуклонном взаимодействии на расстояниях 1,5–2 Фм. Суть мезонной теории ядерных сил следующая. Два нуклона, находясь на расстояниях r £ h/2m p c, обмениваются пионами, что является причиной ядерного взаимодействия. Возможны 4 типа обмена:

p « p + p 0 , (5)

n « n + p 0 , (6)

p « n + p + , n « p + p – , (7)

при которых нуклоны оказываются окруженными облаком виртуальных пионов, образующих поле ядерных сил. Поглощение мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами.

На расстояниях меньше 1,5 Фм нуклоны обмениваются более тяжелыми мезонами: h (549 МэВ), r(770 МэВ), w(782 МэВ), которые определяют отталкивание нуклонов.

Поделиться