Космические ритмы и космические связи биосферы. Влияние космоса на биосферу Земли: теории и реальность. достаточное количество жидкой воды, а не льда или пара

    Введение 2

    Живое вещество-компонент биосферы 4

    Абиотические (неживые) компоненты биосферы 8

    Причины и характер загрязнения биосферы 11

    Биосфера и космос 15

    Пищевые цепи и трофические уровни 21

    Биосфера и человек: экологическая опасность 26

    Заключение 29

    Литература 30

    Введение

Сегодня во весь рост поднимается перед людьми одна из сложнейших проблем, независимо от того, живут ли они в Африке или в Европе, в больших городах или в джунглях. Она касается каждого из нас, и избежать её никому не дано. Это- проблема сохранения жизни на планете, выживания человека, как одного из уникальных видов живых существ.

Решение этой проблемы зависит от того, насколько каждый из нас и все человечество вместе осознают «запретную черту», переступить через которую человечество не должно ни при каких обстоятельствах. Такой «запретной чертой» являются законы жизни на планете.

Человек- обитатель биосферы. Именно биосфера- та оболочка Земли, в пределах которой протекает жизнь человечества в целом и каждого из нас.

Термин « биосфера» ввел австралийский геолог Эдуард Зюсс (1881-1914). Современная концепция биосферы связана с именем академика В.И. Вернадского.

Биосфера - область обитания живых организмов; оболочка Земли, состав, структура и энергетика которой определяется совокупной деятельностью живых организмов. Верхняя граница простирается до высоты озонового экрана (20-25 км), нижняя опускается на 1-2км ниже дна океана и в среднем 2-3 км на суше. Биосфера охватывает нижнюю часть атмосферы, гидросферу, педосферу (почву), и верхнюю часть литосферы (горные породы).

Включает в себя все элементы живой и неживой природы, в которой существуют организмы, популяции и природные сообщества. Отдельные факторы среды, оказывающие на их свойства и состояние прямое или косвенное влияние, называют экологическими факторами.

В природе каждый вид в процессе эволюции приспосабливается к определённым изменениям экологических факторов и сам воздействует на окружающую среду. Влияние этих факторов на популяцию проявляется в изменении её численности, занимаемой территории и протекании в ней процессов микроэволюции. Влияние экологических факторов на сообщество проявляется в изменении его видового состава и в смене сообществ. Среди экологических факторов различают три группы:

- антропогенные;

- биотические;

- абиотические.

Данный реферат охватывает общие сведения о биосфере: ее строение, состав. В данной работе так же описаны основные про блемы, меры защиты биосферы, приведены интересные сведения о ее обивателях, взаимодействии экосистемы с космосом, роль человека в ее сохранении.

2. Живое вещество - компонент биосферы

«…На земной поверхности нет химической силы более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом» (В.И. Вернадский).

Живое вещество или биомасса - совокупность всех живых организмов на Земле, способность живого вещества к воспроизводству и распространению на планете, борьбу организмов за пищу, воду, территорию, воздух. Представлено организмами различных размеров. Самые крупные из них- киты. Длина тела современных китов от 1,1 до 33 м, масса от 30 кг до 150 т. К высочайшим деревьям относится секвойя вечнозеленая, которая достигает высоты 110-112 м и имеет диаметр 6-10 м.

По приблизительной оценке, за время существования жизни на Земле в биосфере существовало более миллиарда видов.

Среди живых существ преобладают насекомые (их около миллиона видов). Позвоночные составляют всего 2%. . Известный нам мир жизни более чем на 70% состоит из животных, 225 – это растения и грибы, 5%- одноклеточные организмы.

Живое вещество связано с косным веществом – атмосферой (до уровня озонового экрана), полностью с гидросферой и литосферой, главным образом в границах почвы, но не только.

Живое вещество биосферы неоднородно и обладает тремя типами трофических взаимодействий: автотрофностью, гетеротрофностью, миксотрофностью.

Трофические экологические взаимодействия способствуют преобразованию неорганического (косного) вещества в органическое и обратной перестройке органиче6ских веществ в минеральные. Представители каждого царства, типа и класса выполняют свои функции в экологических взаимодействиях на уровне биосферы.

Живое вещество характеризуется определенными свойствами: это огромная свободная энергия; химические реакции, протекающие в тысячи и даже миллионы раз быстрее, чем в других веществах планеты; специфические химические соединения - белки, ферменты и другие соединения, устойчивые в составе живого; возможность произвольного движения - рост или активное перемещение; стремление заполнить все окружающее пространство; удивительное разнообразие форм, размеров, химических вариантов и т.п., значительно превышающее многие контрасты в неживом, косном веществе.

Поскольку живое вещество является определяющим компонентом биосферы, постольку можно утверждать, что оно может существовать и развиваться только в рамках целостной системы биосферы.

Вместе с тем, все живое вещество физико-химически едино. И в этом состоит один из основных законов всего органического мира - закон физико-химического единства живого вещества.

Закон физико-химического единства живого вещества имеет принципиально важное значение для человеческой практики. Из него следует, что нет такого физического или химического агента, который был бы гибелен для одних организмов и абсолютно безвреден для остальных. Разница лишь количественная: одни организмы более чувствительны, другие менее, одни в ходе отбора приспосабливаются быстрее, другие медленнее. При этом приспособление идет в ходе естественного отбора, то есть за счет гибели тех индивидов, что не смогли адаптироваться к новым условиям.

Второе наиболее важное обобщение для живого вещества планеты состоит в законе константности количества живого вещества: количество живого вещества биосферы в пределах рассматриваемого геологического периода есть константа. Согласно закону биогенной миграции атомов, живое вещество оказывается энергетическим и химическим посредником между Солнцем и поверхностью Земли. Если бы количество живого вещества колебалось, то и энергетика планеты была бы непостоянной. Действительно, такие перемены случались в эволюции жизни на Земле, но они были очень редки. Обычно количество живого вещества планеты было равномерным, как и биохимические круговороты на ней.

Количественное постоянство характерно и для числа видов. Однако в эволюции живого одни виды образовывались, другие вымирали. Такой процесс неизбежен из-за изменения условий жизни на планете и в силу того обстоятельства, что для нормального функционирования природных систем необходима множественность видов, особенно в управляющем звене экосистемы, т.е. среди консументов. Если бы число видов резко колебалось, биосфера потеряла бы свойство надежности. Поэтому во все геологические периоды массового вымирания организмов наблюдалось и бурное видообразование. Правило константности числа видов может быть сформулировано следующим образом: число нарождающихся видов в среднем равно числу вымирающих, и общее видовое разнообразие в биосфере есть константа.

Для изучения живого вещества в экологии применяются определенные методы и подходы. Одним из основных является экосистемный подход.

Впервые определение экосистемы, как совокупности живых организмов с их местообитанием, было дано Тэнсли в 1935 г. При экосистемном подходе в центре внимания эколога оказываются поток энергии и круговорот веществ между биотическим и абиотическим компонентами экосферы. Его больше интересуют здесь функциональные связи (такие, как цепи питания) живых организмов между собой и с окружающей средой, чем видовой состав сообществ и определение редких видов или колебаний численности. Экосистемный подход выдвигает на первый план общность организации всех сообществ, независимо от местообитания и систематического положения входящих в них организмов.

Мириады живых существ населяют биосферу, составляют живое вещество биосферы. Химический состав живого вещества сходен с составом звезд и Солнца, что подтверждает единство природы. У живого вещества современными методами могут быть измерены масса, количество заключенной в нем энергии, характер отвечающего его пространства. Современному живому веществу присуще большое химическое разнообразие.

3. Абиотические (неживые) компоненты биосферы

К биосфере относят прежде всего те участки планеты, где есть условия не только для выживания, но и для размножения живых существ- это поле существования жизни. К нему прилегают территории, в которых живые существа страдают и лишь выживают, но не могут размножаться- поле устойчивости жизни.

Земные абиотические условия, которые определяют поле существования жизни:

    достаточное количество кислорода и углекислого газа,

    достаточное количество жидкой воды, а не льда или пара,

    благоприятные температуры: не слишком высокие, чтобы не свертывался белок, и не слишком низкие, чтобы нормально работали ферменты- ускорители биохимических реакций,

    живому существу необходим прожиточный минимум минеральных веществ.

К абиотическим факторам (факторам неживой природы) относятся:

Совокупность физических и химических свойств почвы и неорганические вещества (Н 2 0, СО 2 , О 2), которые участвуют в круговороте;

Органические соединения, которые связывают биотическую и абиотическую часть, воздушную и водную среду;

Климатические факторы (минимальная и максимальная температуры, при которой могут существовать организмы, свет, географическая широта континентов, макроклимат, микроклимат, относительная влажность, атмосферное давление).

Каждый из этих факторов незаменим и связан друг с другом. Так, недостаток тепла нельзя заменить обилием света, а минеральные элементы, необходимые для питания растений, - водой.

Для жизни наземных организмов имеют наибольшее значение имеют свет, температура и влажность.

Свет служит основным источником энергии для всех жизненных процессов, происходящих на Земле. Биологическое значение света обусловлено его спектральным составом, интенсивностью, суточной и сезонной периодичностью.

Температура – важный фактор, влияющий на рост, развитие, размножение, дыхание, синтез органических веществ и другие жизненно важные для организмов процессы.

Вода – играет исключительную роль в поддержании жизни на Земле. Для водных организмов она является основной природной средой. Другими словами вода является источником жизни на Земле. Для большинства наземных организмов недостаток воды является ограничивающим фактором. У обитателей засушливых степей и пустынь в процессе эволюции сформировались различные приспособления к экономному расходованию и добыванию влаги. У растений это наличие воскового налёта и густое опушение на листьях, уменьшение листовой пластинки и превращение листьев в колючки, развитие глубоко проникающей, хорошо развитой корневой системы.

Гидросфера вместе с ее населением играет большую роль в жизни человека, которая с прогрессом цивилизации непрерывно возрастает. Водоемы все интенсивнее используют для питьевого и технического водоснабжения как рыбохозяйственные угодья и зоны рекреации, для целей энергетики и навигации и во многих других отношениях. Поэтому по мере освоения гидросферы все большее значение приобретает ее биологическое изучение в интересах оптимизации природопользования и охраны среды.

По сравнению с почвой и воздухом вода отличается гораздо большей термостабильностью, что благоприятно для существования жизни. Когда вода начинает нагреваться, возрастает испарение, вследствие чего повышение температуры замедляется.

При охлаждении воды ниже 0"С и образовании льда, выделяющееся тепло тормозит дальнейшее понижение температуры.

По сравнению с воздухом вода гораздо менее прозрачна, и падающий в нее свет довольно быстро поглощается и рассеивается.

Основной запас воздуха находится в тонком слое атмосферы – тропосфере. Воздух представляет собой смесь газов (а не соединение) и является источником кислорода, необходимого для обеспечения процессов жизнедеятельности всех живых организмов на Земле. Кислород необходим для дыхания растениям и животным. Следует заметить, что современная атмосфера содержит двадцатую часть кислорода, имеющегося в биосфере. Главные запасы кислорода сосредоточены в карбонатах, в некоторых органических веществах и в окислах железа.

Биосфера- глобальная экосистема, особая оболочка Земли, сфера распространения жизни, границы которой определяются наличием пригодных для организмов абиотических условий: температуры, жидкой воды, состава газов, элементов минерального питания.

4. Причины и характер загрязнения биосферы

Загрязнение биосферы - одна из древнейших проблем человеческой цивилизации.

Опасность для биосферы состоит в следующем:

Использование человеком преимущественно внутренних по отношению к биосфере источников энергии (органическое топливо);

Использование нерациональных хозяйственных циклов, приводящих к появлению отходов;

Использование вредных для природы синтетических веществ;

Уничтожение человеком структурного многообразия биосферы, что разрушает экосистемы.

Появление новых болезней - реакция биосферы на вмешательство человека.

По характеру возникновения загрязнения подразделяют на естественные и антропогенные. Естественные загрязнения возникают в результате природных, как правило, катастрофических процессов (например, мощное извержение вулкана, селевой поток и т.п.), вне всякого влияния человека на эти процессы, антропогенные - в результате хозяйственной деятельности человека. Интенсивность антропогенных загрязнений непосредственно связана с ростом численности населения земного шара и в первую очередь с развитием крупных промышленных центров.

Антропогенные загрязнения подразделяются на промышленные, сельскохозяйственные и военные. Промышленные загрязнения вызываются отдельно взятым предприятием или их совокупностью, а также транспортом. Сельскохозяйственные загрязнения обусловлены применением пестицидов, дефолиантов и других агентов, внесением удобрений в количествах, не усваиваемых культурными растениями, сбросом отходов животноводства и другими действиями, связанными с сельскохозяйственным производством. Военные загрязнения возникают в результате работы предприятий военной промышленности, транспортировки военных материалов и оборудования, испытания образцов оружия, функционирования военных объектов и всего комплекса военных средств в случае ведения военных действий. Последствия войны с применением атомного оружия могут привести к апокалипсису - «ядерной зиме».

Загрязнение атмосферы - привнесение в воздух или образование в нем химическими веществами или организмами физических агентов, неблагоприятно воздействующих на среду жизни или наносящих урон материальным ценностям, а также образование антропогенных физических полей.

Загрязнение гидросферы - поступление в воду загрязнителей в количествах и концентрациях, способных нарушить нормальные условия среды в значительных по размерам водных объектах.

Загрязнение почвы - привнесение и возникновение в почве новых, обычно не характерных для нее физических, химических или биологических агентов, которые меняют ход почвообразовательного процесса (тормозят его), резко снижают урожайность, вызывают накопление загрязнителей в растениях (например, тяжелых металлов), из которых эти загрязнения прямо или косвенно (через растительные или животные продукты питания) попадают в организм человека.

Загрязнение космического пространства - общее засорение околоземного и ближнего космического пространства космическими объектами. Наиболее опасно радиоактивное загрязнение из-за вывода на орбиты и разрушения ядерных реакторов, кроме того «космического мусора», который вносит помехи в нормальное функционирование наземных радиотехнических и астрономических приборов. По характеру воздействия загрязнения подразделяют на первичные и вторичные.

Первичное загрязнение - поступление в окружающую среду непосредственно загрязнителей, образуемых в ходе естественных природно-антропогенных и чисто антропогенных процессов.

Вторичное загрязнение - образование (синтез) опасных загрязнителей в ходе физико-химических процессов, идущих непосредственно в окружающей среде. Так, из нетоксичных составляющих в некоторых условиях образуются ядовитые газы - фосген; фреоны, химически инертные у поверхности Земли, вступают в стратосфере в фотохимические реакции, вырабатывая ионы хлора, служащие катализатором при разрушении озонового слоя (экрана) планеты. Отдельные реагенты такого взаимодействия могут быть неопасными.

По механизму воздействия загрязнения подразделяются на механические, физические (тепловые, световые, акустические, электромагнитные), химические, радиационные, биологические.

Механические загрязнения - засорение среды агентами, оказывающими главным образом неблагоприятное механическое воздействие на естественные и искусственные объекты.

Физические загрязнения связаны с изменением физических параметров среды: температурно-энергетические (тепловые), волновые (световые, акустические, электромагнитные), радиационные (радиационные, радиоактивные).

Тепловые (термальные) загрязнения обусловлены повышением температуры среды, главным образом в связи с промышленными выбросами нагретого воздуха, отходящих газов (продукты сгорания, выбрасываемые в дымовую трубу) и вод. Могут возникать и как вторичный результат изменения химического состава среды (например, парниковый эффект - постоянное потепление климата на планете в результате накопления в атмосфере углекислого и других газов (метана, фтор- и хлоруглеродов), которые аналогично покрытию теплицы, пропуская солнечные лучи, препятствуют длинноволновому тепловому излучению уходить с поверхности Земли).

Световые загрязнения вызваны нарушением естественной освещенности местности в результате действия искусственных источников света и могут приводить к аномалиям в жизни растений и животных.

Акустические загрязнения связаны с превышением естественного уровня шума и ненормальным изменением звуковых характеристик в населенных пунктах и других местах вследствие работы транспорта, промышленных установок, бытовых приборов, поведения людей или других причин.

Электромагнитные загрязнения возникают в результате изменения электромагнитных свойств среды (от линий электропередачи, радио и телевидения, работы некоторых промышленных установок и т.п.), приводят к изменениям в тонких клеточных и молекулярных биологических структурах.

Радиоактивные загрязнения обусловлены превышением естественного уровня содержания радиоактивных веществ в среде. Их последствием является радиационное загрязнение, вызванное действием ионизирующих излучений.

Биологические загрязнения вызваны проникновением (естественным или благодаря деятельности человека) в эксплуатируемые экосистемы и технологические установки видов организмов, чуждых данным сообществам и установкам и обычно там отсутствующих. Выделяют биотические и микробиологические загрязнения.

Микробиологические (микробные) загрязнения возникают из-за появления в среде необычно большого количества микроорганизмов, связанного с массовым их размножением в средах, измененных в ходе хозяйственной деятельности человека.

5 . Биосфера и космос

Земля - уникальная планета, она находится на единственно возможном расстоянии от Солнца, которое определяет такую температуру поверхности Земли, при которой вода может находиться в жидком состоянии.

Земля получает от солнца огромное количество энергии и сохраняет при этом примерно постоянную температуру. Значит наша планета излучает в космос почти такое же количество энергии, какое получает из космос: приход и расход должны быть сбалансированы, иначе система однажды потеряет устойчивость. Земля либо нагреется, либо замерзнет и превратится в безжизненное тело.

По существу, биосфера может быть рассматриваема как область земной коры, занятая трансформаторами, переводящими космические излучения в действенную земную энергию - электрическую, химическую, механическую, тепловую и т.д.
Космические излучения, идущие от всех небесных тел, охватывают биосферу, проникают всю ее и все в ней.
Мы улавливаем и сознаем только ничтожную часть этих излучений, и среди них мы изучали почти исключительно излучения Солнца.
Но мы знаем, что существуют и падают на биосферу волны иных путей, идущие от отдаленнейших частей космоса. Так, звезды и туманности непрерывно шлют на нашу планету световые излучения.
Все говорит за то, что открытые В. Гессом в верхних слоях атмосферы проникающие излучения возникают вне границ нашей солнечной системы. Их возникновение ищут в Млечном Пути, в туманностях, в звездах типа Мира Цети (Mira Ceti). Может быть, из Млечного Пути (В. Нернст) происходят загадочные проникающие радиации, столь яркие в высоких слоях нашей атмосферы.
Их учет и их понимание - дело будущего. Но, несомненно, не они, а лучи Солнца обусловливают главные черты механизма биосферы. Изучение отражения на земных процессах солнечных излучений уже достаточно для получения первого, но точного и глубокого представления о биосфере как о земном и космическом механизме. Солнцем в корне переработан и изменен лик Земли, пронизана и охвачена биосфера. В значительной мере биосфера является проявлением его излучений; она составляет планетный механизм, превращающий их в новые разнообразные формы земной свободной энергии, которая в корне меняет историю и судьбу нашей планеты.
Для нас уже ясно огромное значение в биосфере коротких ультрафиолетовых волн солнечной радиации, длинных красных тепловых, и промежуточных лучей видимого светового спектра. В строении биосферы мы уже сейчас можем выделить ее части, играющие роль трансформаторов для этих трех различных систем солнечных колебаний.
Медленно и с трудом выявляется нашему уму механизм превращения солнечной энергии в биосфере в земные силы. Мы привыкли видеть другие черты в отвечающих ему явлениях; он скрыт для нас в бесконечном разнообразии красок, форм, движений природы - мы сами составляем его часть нашей жизнью. Века и тысячелетия прошли, пока человеческая мысль могла отметить черты единого связного механизма в кажущейся хаотической картине природы.

Превращение трех систем солнечных излияний в земную энергию происходит отчасти в одних и тех же участках биосферы, но местами в ней выделяются области, в которых резко преобладают превращения одного какого-нибудь рода, Природные тела - носители превращений - всегда резко различны для ультрафиолетовых, световых и тепловых солнечных волн.
Короткие ультрафиолетовые излучения в известной части своей целиком, в других -в значительной мере задерживаются в верхних разреженных частях газовой земной оболочки - в стратосфере и, может быть, в еще более высокой и более бедной атомами - свободной атмосфере. Это задерживание, поглощение, связано с трансформацией лучевой энергии коротких волн. В этих областях под влиянием ультрафиолетовых излучений наблюдаются изменения электромагнитных полей, распадения молекул, разнообразные явления ионизации, новообразования газовых молекул новых химических соединений. Лучистая энергия частью превращается в разные формы электрических и магнитных проявлений, частью в связанные с ней молекулярные, атомные и своеобразные химические процессы разреженных газообразных состояний вещества.
Нашему взору эти области и эти тела являются в форме северных сияний, зарниц, зодиакального света, свечения небесного свода, который становится заметным лишь в темные ночи, но все же составляет значительную часть освещения ночного неба, в форме светящихся облаков и других разнообразных отражений стратосферы и внешних пределов планеты в картине нашего земного мира. Нашим инструментам этот таинственный мир явлений раскрывается в электрических, магнитных, радиоактивных, химических, спектроскопических отражениях в его непрерывном движении и в превышающем мысль разнообразии.
Эти явления не являются следствием изменения земной средой одних ультрафиолетовых лучей Солнца. Мы должны считаться здесь со сложным процессом. Здесь задерживаются, т.е. превращаются в новые явления - уже земные - все формы лучистой энергии Солнца за пределами тех 4 с половиной ее октав, которые попадают в биосферу. За эти пределы едва ли заходят и те мощные потоки частиц - электронов, которые непрерывно исходят из Солнца, или те материальные части - космическая пыль и газовые тела, - столь же непрерывно захватываемые земным притяжением и несущие Земле новые источники энергии.
Мало-помалу входит в общее сознание значение этих явлений в истории нашей планеты. Так, несомненной стала связь их с другой формой превращения космической энергии, с областью живого вещества. Короткие световые волны - 180-200 mu - разрушают все живые организмы. Задерживая короткие волны нацело, стратосфера охраняет от них нижние слои земной поверхности - область жизни.
Чрезвычайно характерно, что главное поглощение этих лучей связано с озоном, образование которого обусловлено существованием свободного кислорода - продукта жизни.

Если значение превращения ультрафиолетовых лучей только начинает сознаваться, роль солнечной теплоты - главным образом инфракрасных излучений - была понята давно. Она обращает на себя главное внимание при изучении влияния Солнца на геологические, и даже геохимические процессы. Ясна и бесспорна роль лучистой солнечной теплоты и для существования жизни. Несомненно и превращение тепловой лучистой энергии Солнца в энергию механическую, молекулярную (испарение и т.п.), химическую.
Проявления таких превращений наблюдаются нами на каждом шагу и не требуют разъяснений; мы видим их в жизни организмов, в движении и деятельности ветров или морских течений, в морской волне и морском прибое, в разрушении скал и деятельности ледников, в движении и образовании рек и в колоссальной работе снежных и дождевых осадков...
Обычно менее сознается собирающая и распределяющая тепло роль жидких и газовых частей биосферы - переработка ею этим путем лучистой тепловой энергии Солнца. Атмосфера, океан, озера и реки, дождевые и снеговые осадки являются тем аппаратом, который производит эту работу. Мировой океан благодаря совершенно особым, исключительным среди всех соединений тепловым свойствам воды может быть связанным с характером ее молекул, является регулятором тепла, огромная роль которого на каждом шагу сказывается в бесчисленных явлениях погоды и климата и в связанных с ними процессах жизни и выветривания. Быстро нагреваясь благодаря своей большой теплоемкости, океан медленно отдает собранное тепло благодаря характеру своей теплопроводности. Он превращает поглощенную лучистую теплоту в молекулярную энергию при испарении, в химическую - через проникающее его живое вещество, в механическую - в своих морских течениях и прибое. Того же направления и, пожалуй, сравнимого масштаба термическая роль рек, осадков, воздушных масс и их нагреваний и охлаждений.

Ультрафиолетовые и инфракрасные лучи Солнца влияют на химические процессы биосферы только косвенным путем. Не они являются главным источником их энергии. Химическая энергия биосферы - в ее действенной форме - выявляется из лучистой энергии Солнца совокупностью живых организмов Земли - ее живым веществом. Создавая фотосинтезом - солнечным лучом - бесконечное число новых в биосфере химических соединений - многие миллионы различных комбинаций атомов, оно непрерывно с уму непостижимой быстротой покрывает ее мощной толщей молекулярных систем, чрезвычайно легко дающих новые соединения, богатые свободной энергией в термодинамическом поле биосферы, в нем неустойчивые и неуклонно переходящие в новые формы устойчивого равновесия.
Эта форма трансформаторов является совершенно особым механизмом по сравнению с телами Земли, в которых идет превращение в новые формы энергии коротких и длинных волн солнечной радиации. Мы объясняем превращение ультрафиолетовых лучей их воздействием на материю, на ее независимым от них путем полученные атомные системы; превращения же тепловых излучений связываем с созданными помимо их непосредственного влияния молекулярными строениями. Но фотосинтез, как он наблюдается в биосфере, связан с особыми чрезвычайно сложными механизмами, создаваемыми им самим при условии одновременного проявления и превращения в окружающей среде ультрафиолетовых и закрасных радиаций Солнца.
Создаваемые этим путем механизмы превращения энергии - живые организмы - представляют совершенно особого рода образования, резко отличные от всех атомных, ионных или молекулярных систем, которые строят материю земной коры вне биосферы и часть вещества биосферы.
Живые организмы составлены из структур того же рода, правда более сложных, как и те, которые строят косную материю. Однако по производимым ими изменениям в химических процессах биосферы они не могут быть рассматриваемы, как простые совокупности этих структур. Энергетический их характер, как он проявляется в их размножении, с геохимической точки зрения не сравним с инертными структурами, строящими и косную, и живую материю.
Механизм химического действия живого вещества нам неизвестен. По-видимому, однако, начинает выясняться, что с точки зрения энергетических явлений, в живом веществе фотосинтез происходит не только в особой химической среде, но и особом термодинамическом поле, отличном от термодинамического поля биосферы. После умирания организма соединения, устойчивые в термодинамическом поле живого вещества, попадая в термодинамическое поле биосферы, оказываются в нем неустойчивыми и являются в нем источником свободной энергии

Биосфера тесно связана с космосом. Потоки энергии, поступающие к Земле, создают условия, обеспечивающие жизнь. Магнитное поле и озоновый экран защищают планету от излишних космических излучений и интенсивной солнечной радиации. Космические излучения, достигающие биосферы, обеспечивают фотосинтез и влияют на активность живых существ.

6. Пищевые цепи и трофические уровни

Биогеоценозы очень сложны. В них всегда имеется много параллельных и сложно переплетенных цепей питания, а общее число видов часто измеряется сотнями и даже тысячами. Почти всегда разные виды питаются несколькими разными объектами и сами служат пищей нескольким членам экосистемы. В результате получается сложная сеть пищевых связей.

Каждое звено пищевой цепи называется трофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т. д. Обычно бывает четыре или пять трофических уровней и редко больше шести.

Первичными продуцентами являются автотрофные организмы, в основном зеленые растения. Некоторые прокариоты, а именно сине-зеленые водоросли и немногочисленные виды бактерий, тоже фотосинтезируют, но их вклад относительно невелик. Фотосинтетики превращают солнечную энергию (энергию света) в химическую энергию, заключенную в органических молекулах, из которых построены ткани. Небольшой вклад в продукцию органического вещества вносят и хемосинтезирующие бактерии, извлекающие энергию из неорганических соединений.

В водных экосистемах главными продуцентами являются водоросли – часто мелкие одноклеточные организмы, составляющие фитопланктон поверхностных слоев океанов и озер. На суше большую часть первичной продукции поставляют более высокоорганизованные формы, относящиеся к голосеменным и покрытосеменным. Они формируют леса и луга.

Первичные консументы питаются первичными продуцентами, т. е. это травоядные животные. На суше типичными травоядными являются многие насекомые, рептилии, птицы и млекопитающие. Наиболее важные группы травоядных млекопитающих – это грызуны и копытные. К последним относятся пастбищные животные, такие, как лошади, овцы, крупный рогатый скот, приспособленные к бегу на кончиках пальцев.

В водных экосистемах (пресноводных и морских) травоядные формы представлены обычно моллюсками и мелкими ракообразными. Большинство этих организмов – ветвистоусые и веслоногие раки, личинки крабов, усоногие раки и двустворчатые моллюски (например, мидии и устрицы) – питаются, отфильтровывая мельчайших первичных продуцентов из воды. Вместе с простейшими многие из них составляют основную часть зоопланктона, питающегося фитопланктоном. Жизнь в океанах и озерах практически полностью зависит от планктона, так как с него начинаются почти все пищевые цепи.

Растительный материал (например, нектар) → муха → паук →

→ землеройка → сова

Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица

Существуют два главных типа пищевых цепей – пастбищные и детритные. Выше были приведены примеры пастбищных цепей, в которых первый трофический уровень занимают зеленые растения, второй – пастбищные животные и третий – хищники. Тела погибших растений и животных еще содержат энергию и «строительный материал», так же как и прижизненные выделения, например, моча и фекалии. Эти органические материалы разлагаются микроорганизмами, а именно грибами и бактериями, живущими как сапрофиты на органических остатках. Такие организмы называются редуцентами. Они выделяют пищеварительные ферменты на мертвые тела или отходы жизнедеятельности и поглощают продукты их переваривания. Скорость разложения может быть различной. Органические вещества мочи, фекалий и трупов животных потребляются за несколько недель, тогда как упавшие деревья и ветви могут разлагаться многие годы. Очень существенную роль в разложении древесины (и других растительных остатков) играют грибы, которые выделяют фермент целлюлозу, размягчающий древесину, и это дает возможность мелким животным проникать внутрь и поглощать размягченный материал.

Кусочки частично разложившегося материала называют детритом, и многие мелкие животные (детритофаги) питаются им, ускоряя процесс разложения. Поскольку в этом процессе участвуют как истинные редуценты (грибы и бактерии), так и детритофаги (животные), и тех и других иногда называют редуцентами, хотя в действительности этот термин относится только к сапрофитным организмам.

Детритофагами могут в свою очередь питаться более крупные организмы, и тогда создается пищевая цепь другого типа – цепь, цепь, начинающаяся с детрита:

Детрит → детритофаг → хищник

К детритофагам лесных и прибрежных сообществ относятся дождевой червь, мокрица, личинка падальной мухи (лес), полихета, багрянка, голотурия (прибрежная зона).

Приведем две типичные детритные пищевые цепи наших лесов:

Листовая подстилка → Дождевой червь → Черный дрозд → Ястреб-перепелятник

Мертвое животное → Личинки падальных мух → Травяная лягушка → Обыкновенный уж

Некоторые типичные детритофаги - это дождевые черви, мокрицы, двупарноногие и более мелкие (<0,5 мм) животные, такие, как клещи, ногохвостки, нематоды и черви-энхитреиды.

Рисунок 1. Пищевые цепи

Рисунок 2.Упрощённый вариант экологической пирамиды

В биосфере происходят процессы преобразования неорганического, косного вещества в органическое и обратной перестройки органических веществ в минеральные. Движение и преобразование веществ в биосфере осуществляется при непосредственном участии живого вещества, все виды которого специализировались на различных способах питания.

7 . Биосфера и человек: экологическая опасность

Мир уже знает о грозящей ему опасности. И на сей раз известно живое существо, повинное в приближающейся катастрофе, - африканский примат, который за 5 млн лет сильно размножился и теперь нарушает равновесие в биосфере. Этот нарушитель - человек . Его появлению предшествовал длительный период, в котором возникали, эволюционировали, уступали место одни другим предки Homo sapiens- гоминиды. Они развивались и жили в общем потоке жизни, были его участниками и обладали целым рядом потребностей и инстинктов, абсолютно необходимых для жизни и эволюции. Всё это делало поток жизни, с одной стороны, целостным, легко ранимым в отдельных звеньях, а с другой – хорошо самозащищенным и защищаемым системой.

Прошли тысячелетия, возникали и гибли великие цивилизации, созданные человеком. Все великолепие современной цивилизации- обилие и разнообразие товаров, транспорт, космические полеты, возможность огромному количеству людей заниматься наукой, искусством, наконец, обеспеченная старость – все это следствие того огромного количества искусственной энергии, которое стало теперь производить человечество. Мы живем не энергией Солнца, как растения и животные, а расходуем запасы углеродов- нефти, угля, газа, сланцев, которые накоплены прошлыми биосферами за сотни миллионов лет.

Но что при этом происходит с тепловым балансом планеты? Искусственная энергия рассеивается и идет на нагревание Земли, её тверди, океана, атмосферы. Наступит время, когда искусственная энергия начнет сказываться на структуре теплового баланса планеты.

Таким образом, распространенное представление о том, что увеличение количества производимой людьми энергии всегда благо, также требует пересмотра: увеличение средних температур планеты на 4-5 градусов грозит человечеству экологической катастрофой. И здесь есть черта, переступать которую нельзя.

Предсказать заранее даже в самых общих чертах результаты такого потепления совсем не просто. При повышении средней температуры уменьшается перепад температур между экватором и полюсом. А это- главный двигатель, благодаря которому происходит движение атмосферы, переносящее тепло от экваториальных зон к полярным. Если увеличивается перепад температур, то и интенсивность атмосферной циркуляции увеличивается. Если уменьшается- циркуляция атмосферы делается более вялой, уменьшается влагоперенос. Значит, засушливые зоны становятся еще более засушливыми, продуктивность биоты падает.

Еще в прошлом веке известный географ, климатолог, геофизик профессор А. И.Войков сформулировал известный закон: тепло на Севере- сухо на Юге. Этот закон, который носит теперь название закона Воейкова, подытоживает многолетние наблюдения. Всякий раз, когда в ходе циклического изменения средних температур на Севере начинает теплеть, в Заволжье, Казахстане и других районах юго - востока Евразии увеличивается количество засушливых лет. Особенно чутко откликается на изменение количества осадков растительность пустынь и полупыстынь.

Человек ищет способы ограничить свое пагубное воздействие на природу, потому что осознал свою зависимость от состояния биосферы. Люди поняли, что их деятельность должна коренным образом измениться и соответствовать природным законам биосферы, в границах которых только и может протекать всякая жизнедеятельность.

Мы проследили лишь одно явление, которое подтверждает, что человек теперь способен очень легко переступить ту «роковую черту», ту грань, за которой начнутся необратимые процессы изменения условий его существования. Биосфера начнет переходить в новое состояние, и места для человека в её новом состоянии может не оказаться. Вот почему человечество должно быть способным предвидеть результаты своих действий и знать, где проходит «запретная черта», отделяющая возможность дальнейшего развития цивилизации от её более или менее быстрого угасания.

Каждый биологический вид (и человек тут не исключение)может жить в довольно узких рамках той среды, к которой он генетически приспособлен. Если среда жизни изменяется быстрее, чем может наступить адаптация или переформирование вида в новое образование, организм неизбежно вымирает.

Покров живого вещества на планете резко меняется. Он сжимается подобно бальзаковской шагреневой коже. Да и сама кожа истончается, даже в чисто механическом смысле- исчезают леса, идет деградация черноземов и т. п. Из под ног человечества уходит фундамент как непосредственной среды его жизни, так и экономического развития.

В настоящее время процесс обеднения живого вещества, исчезновения видов живого идет в десять, а в некоторых случаях и в сто раз интенсивнее, чем шло 65 миллионов лет назад вымирание динозавров. Виды не просто исчезают, меняется вся структура живого вещества. Крупные животные и растения сменяются более мелкими: копытные- грызунами, грызуны- растительноядными насекомыми.

Потери в составе живого вещества могут привести к авральному разрушению биогеохимической системы планеты Глобальное искажение биогеохимических циклов грозит тем, что природа станет иной, не той, к которой приспособлено современное хозяйство. Понадобится грандиозная перестройка. Потомкам в результате нынешних воздействий человека грозит природно-ресурсная нищета, истощение естественных ресурсов.

Человечество должно сохранить биологическое разнообразие биосферы, так как его сокращение ведет к нарушению биосферных процессов, к катастрофическим изменениям условий жизни на планете.

8. Заключение


Человечество осознало, как мала наша Земля, поняло, что вмешиваться в процессы, протекающие в природе, нужно крайне осторожно.

Наша планета уникальна, потому что на ней есть жизнь. Жизнь пронизывает не только водную и воздушную стихии, но и земную твердь. Жизнь на Земле представлена живым веществом, которое образовано миллионами видов и миллиардами особей. Живое вещество, все биологическое разнообразие Земли защищено от космических лучей геомагнитным полем и озоновым экраном. Все формы и проявления жизни не существуют сами по себе, они связаны сложными взаимоотношениями в единый комплекс жизни - глобальную экосистему (биосферу) . Эти взаимоотношения и связи в живой природе удивительны! Каждая группа родственных видов, образующих царство, выполняет определенную роль в круговороте веществ: создание, преобразование, разрушение органических веществ.

Основным источником энергии в биосфере является Солнце. Биогенный круговорот веществ не дает прерваться жизни на планете Земля. Живые существа биосферы преобразовали химический состав воздуха, воды, почвы, определили и их современный состав, повлияли на формирование минералов и горных пород, на рельеф Земли. Биосфера- среда жизни и результат жизнедеятельности.

Одна из главных задач ХХ1 века, в решение которой существенный вклад должна внести экология, - это достижение гармонии между человеком и природой.

Литература

    Бродский А.К. Краткий курс общей экологии: Учеб.пособие.-СПб., 2001.

    Владимиров В.А., Измалков В.И. Катастрофы и экология.- М.,2000.

    Данилов- Данильян В.И., Лосев К.С. Экологический вызов и устойчивое развитие. – М., 2009.

    Журнал «Eco News» № 5 2002г www.statsoft.ru

пановских /.- М., 2001.

  1. Окружающая среда: энциклопедический словарь- справочник:-Т.1.-М.,1999.

  2. Научные публикации из сети Internet: Борис Преображенский, Анна Селезнева., ИСАР ДВ «Листья в ладонях»; Ж. А. Кузьмичева., Педагогический вестник «Может ли экологическая этика спасти человечество?»; В.И. Поляков., Экологическая правда «Неизбежность развития глобального экологического кризиса в XXI веке».

Исходной основой существования биосферы и происходящих в ней биогеохимических процессов является астрономическое положение нашей планеты, в первую очередь ее расстояние от Солнца и наклон земной оси к плоскости земной орбиты. Это пространственное расположение Земли в целом определяет климат на планете, а климат, в свою очередь - жизненные циклы существующих на ней организмов. Основным источником всех геологических, химических и биологических процессов на нашей планете является Солнце. Среди космических факторов особенно серьезное влияние на биосферу оказывают природно-радиационный фон и магнитные поля.

Природно-радиационный фон слагается из трех компонентов:

  • ? природные радионуклиды (уран, торий);
  • ? продукты их радиоактивного распада, которые находятся во всех элементах земной коры, в почве, в воде, атмосфере и поглощаются всеми живыми организмами;
  • ? высокоэнергетические излучения, попадающие на Землю из космического пространства в виде потока фонового излучения.

Вопреки страхам людей перед радиоактивностью оказывается, что без природно-радиационного фона нормальное существование живых организмов невозможно. Это следы эпохи возникновения и первоначального существования жизни, когда более высокий уровень радиоактивности служил дополнительным источником энергии первым организмам.

Биосфера также погружена в океан электромагнитных полей космического, земного и биогенного происхождения. Практически все процессы жизнедеятельности связаны с электромагнитными полями, диапазон которых лежит в широком интервале длин волн. Многие фундаментальные биологические процессы невозможны без переноса электрических зарядов, вызывающих магнитное поле, поэтому любой организм представляет собой генератор электромагнитных сигналов.

Электромагнитный фон биосферы является эволюционным фактором, который влияет на биологические ритмы. Космические излучения, генерируемые ядром Галактики, нейтронными звездами, ближайшими звездными системами, Солнцем и планетами, пронизывают биосферу и все пространство в ней. В этом потоке разнообразных излучений основное место принадлежит солнечному излучению, которое оказывает постоянное действие на все земные явления.

Связь между циклами солнечной активности и процессами в биосфере была замечена еще в XVIII в. Тогда английский астроном В. Гершель обратил внимание на зависимость урожаев пшеницы от числа солнечных пятен. В конце XIX века профессор Одесского университета Ф.Н. Шведов, изучая срез ствола столетней акации, обнаружил, что толщина годичных колец изменяется каждые 11 лет, повторяя цикличность солнечной активности. Но лишь в XX в. удалось понять, что солнечная активность связана с электромагнитными и другими колебаниями мирового пространства. Установил этот факт А.Л. Чижевский, который обобщил опыт предшественников и подвел под эти эмпирические данные твердую научную базу. Он считал, что Солнце диктует ритм большинства биологических процессов на Земле. Когда на нем образуется много пятен, появляются хромосферные вспышки и усиливается яркость короны (это характерно для периодов активного Солнца), на нашей планете разражаются эпидемии, усиливается рост деревьев, особенно сильно размножаются вредители сельского хозяйства и микроорганизмы - возбудители различных болезней. Подобное заключение было сделано после наложения друг на друга графиков солнечной активности и активности биосферы.

Рассматривая вопрос о происхождении жизни на Земле, мы кратко упомянули о биосфере, живом веществе и его биогеохимических функциях, открытых В.И. Вернадским. Настоящая тема предполагает более обстоятельное изучение этих вопросов.

На протяжении многих сотен человеческих поколений взаимодействие человека с окружающей средой заметных изменений в биосфере не вызывало, но все это время шло накопление знаний и сил. Постепенно, используя свое интеллектуальное превосходство над остальными представителями животного мира, человек охватил своей деятельностью всю верхнюю оболочку планеты - всю биосферу. Эта деятельность привела к приручению животных, к выведению культурных растений. Человек стал менять окружающий его мир и создавать для себя новую, не существовавшую никогда на планете живую природу.

Под влиянием человеческого труда с момента появления человечества начался и в нарастающем темпе продолжает происходить процесс видоизменения биосферы и ее переход в новое качественное состояние. Естествознанию известны более ранние переходы биосферы в качественно новые состояния, сопровождавшиеся почти полной ее перестройкой. Но данный переход представляет собой нечто особенное, ни с чем не сравнимое явление.

В системе современного научного мировоззрения понятие биосферы занимает ключевое место во многих науках. Разработка учения о биосфере неразрывно связана с именем В.И. Вернадского, хотя и имеет довольно длинную предысторию, начавшуюся с книги Ж.-Б. Ламарка «Гидрогеология» (1802), в которой содержится одно из первых обоснований идеи о влиянии живых организмов на геологические процессы. Затем был грандиозный многотомный труд А. Гумбольдта «Космос» (первая книга вышла в 1845 году), в котором было собрано множество фактов, подтверждающих тезис о взаимодействии живых организмов с теми земными оболочками, в которые они проникают. Сам термин «биосфера» был впервые введен в науку немецким геологом и палеонтологом Эдуардом Зюссом, подразумевавшим под ней самостоятельную, пересекающуюся с другими сферу, в которой на Земле существует жизнь. Он дал определение биосферы как совокупности организмов, ограниченной в пространстве и времени и обитающей на поверхности Земли.

Но о геологической роли биосферы, о ее зависимости от планетарных факторов Земли пока не было сказано ничего. Впервые идею о геологических функциях живого вещества, представление о совокупности всего органического мира в виде единого нераздельного целого высказал В.И. Вернадский. Его концепция складывалась постепенно, от первой студенческой работы «Об изменении почвы степей грызунами» (1884) к «Живому веществу» (рукопись рубежа 20-х годов), «Биосфере» (1926), «Биогеохимическим очеркам» (1940), а также «Химическому строению биосферы Земли» и «Философским мыслям натуралиста», над которыми он работал в последние десятилетия своей жизни - теоретический итог творчества ученого и мыслителя.

Введя понятие живого вещества как совокупности всех живых организмов планеты, в том числе и человека, Вернадский тем самым вышел на качественно новый уровень анализа жизни и живого - биосферный. Это дало возможность понимать жизнь как могучую геологическую силу на шей планеты, действенно формирующую сам облик Земли. В функциональном плане живое вещество становилось тем звеном, которое соединяло историю химических элементов с эволюцией биосферы. Введение этого понятия также позволяло поставить и решить вопрос о механизмах геологической активности живого вещества, источниках энергии для этого.

Геологическая роль живого вещества основана на его геохимических функциях, которые современная наука классифицирует по пяти категориям: энергетическая, концентрационная, деструктивная, средообразующая, транспортная. Они основаны на том, что живые организмы своим дыханием, своим питанием, своим метаболизмом, непрерывной сменой поколений порождают грандиознейшее планетное явление -миграцию химических элементов в биосфере. Это предопределило решающую роль живого вещества и биосферы в становлении современного облика Земли - ее атмосферы, гидросферы, литосферы.

Такие грандиозные преобразования геосферы требуют гигантских затрат энергии. Источником ее является биогеохимическая энергия живого вещества биосферы, открытая Вернадским.

Биосфера - это живое вещество планеты и преобразованное им косное вещество (образованное без участия жизни). Таким образом, это не биологическое, геологическое или географическое понятие. Это фундаментальное понятие биогеохимии, один из основных структурных компонентов организованности нашей планеты и околоземного космического пространства, сфера, в которой осуществляются биоэнергетические процессы и обмен веществ вследствие деятельности жизни.

Пленка биосферы, окутывающая Землю, очень тонкая. Сегодня принято считать, что в атмосфере микробная жизнь имеет место примерно до высоты 20 - 22 км над земной поверхностью, а наличие жизни в глубоких океанических впадинах опускает эту границу до 8 - 11 км ниже уровня моря. Углубление жизни в земную кору много меньше, и микроорганизмы обнаружены при глубинном бурении и в пластовых водах не глубже 2 - 3 км. Но эта тончайшая пленка покрывает абсолютно всю Землю, не оставляя ни одного места на нашей планете (включая пустыни и ледяные пространства Арктики и Антарктики), где бы не было жизни. Разумеется, количество живого вещества в разных областях биосферы различно. Самое большое его количество расположено в верхних слоях литосферы (почва), гидросферы и нижних слоях атмосферы. По мере углубления в земную кору, океан, выше в атмосферу - количество живого вещества уменьшается, но нет резкой границы между биосферой и окружающими ее земными оболочками. И прежде всего нет такой границы в атмосфере, которая делала бы биосферу закрытой для всех космических излучений, а также энергии Солнца. Таким образом, биосфера открыта космосу, купается в потоках космической энергии. Перерабатывая эту энергию, живое вещество преобразует нашу планету. Само образование биосферы, в том числе и происхождение жизни на Земле, является результатом действия этих космических сил, важнейшего фактора функционирования биосферы.

Космические излучения и прежде всего энергия Солнца оказывают постоянное действие на все явления на Земле. Основатель гелиобиологии А.Л. Чижевский особенно много занимался изучением солнечно-земных связей. Он отмечал, что самые разнообразные и разнохарактерные явления на Земле -и химические превращения земной коры, и динамика самой планеты и составляющих ее частей, атмо-, гидро- и литосферы,- протекают под непосредственным воздействием Солнца. Солнце является основным (наряду с космическим излучением и энергией радиоактивного распада в недрах Земли) источником энергии, причиной всего на Земле - от легкого ветерка и произрастания растений до смерчей и ураганов и умственной деятельности человека.

Связь между циклами солнечной активности и процессами в биосфере была замечена еще в XVIII веке. Тогда английский астроном В. Гершель обратил внимание на связь между урожаями пшеницы и числом солнечных пятен. В конце XIX века профессор Одесского университета Ф.Н. Шведов, изучая срез ствола столетней акации, обнаружил, что толщина годичных колец изменяется каждые 11 лет, как бы повторяя цикличность солнечной активности.

Обобщив опыт предшественников, А.Л. Чижевский подвел под эти эмпирические данные твердую научную базу. Он считал, что Солнце диктует ритм большинства биологических процессов на Земле; когда на нем образуется много пятен, появляются хромосферные вспышки и усиливается яркость короны, на нашей планете разражаются эпидемии, усиливается рост деревьев, особенно сильно размножаются вредители сельского хозяйства и микроорганизмы - возбудители различных болезней.

Особый интерес представляет утверждение Чижевского, что Солнце существенно влияет не только на биологические, но и на социальные процессы на Земле. Социальные конфликты (войны, бунты, революции), по убеждению Чижевского, во многом предопределяются поведением и активностью нашего светила. По его подсчетам, во время минимальной солнечной активности происходит минимум массовых активных социальных проявлений в обществе (примерно 5%). Во время же пика активности Солнца их число достигает 60%. Эти выводы Чижевского лишь подтверждают неразрывное единство человека и космоса, указывают на их тесное взаимовлияние.

УДК 550.4+551.02

ВЛИЯНИЕ КОСМОСА НА БИОСФЕРУ ЗЕМЛИ

С.Г. Неручев

Всероссийский нефтяной научно-исследовательский геологоразведочный институт (ВНИГРИ),

Санкт-Петербург, Россия

Эл. почта: [email protected] Статья поступила в редакцию 29.03.2010, принята к печати 07.05.2010

Планета Земля является космическим объектом. Обращение ее вокруг Солнца определяет каждый год проявление известных всем климатических сезонов года, на которые четко реагирует биосфера. Гораздо меньше известно о влиянии на биосферу Земли значительно более долговременных периодов, обусловленных обращением Солнца вместе с Землей вокруг центра Галактики, так называемых галактических лет. Целью статьи является рассмотрение, с использованием накопившихся палеобиологических материалов, влияния на биосферу Земли изменяющихся космических условий в течение галактических лет и их климатических сезонов с периодичностью около 200 млн лет, а также более кратковременных изменений космических условий, вызывающих активизацию глубинных процессов на Земле и проявление биосферных кризисов в каждом галактическом году с периодичностью около 30 млн лет. Материалом для анализа этих явлений послужили геологические, палеобиологические и астрономические данные, характеризующие наиболее изученную фанерозойскую эру Земли продолжительностью около 600 млн лет - от начала кембрийского периода до современного момента. Ключевые слова: биосфера, космос, галактические годы, кризисные биосферные события.

COSMIC INFLUENCES ON THE EARTH BIOSPHERE

Oil and Geological Prospecting Institute, Saint-Petersburg, Russia E-mail: [email protected]

The planet Earth is a cosmic object. Its orbiting around the Sun results in well known seasonal changes in the biosphere. Less familiar are significantly longer periodic changes caused by Solar system orbiting around the center of our Galaxy, the so-called galactic years. The present article uses paleobiological data to discuss changes in the Earth biosphere associated with galactic year periods of about 200 million years and, also changes featuring shorter periodicity associated with stirring of deep planetary processes in the Earth and with biospheric crises occurring several times over each galactic year. These phenomena are exemplified with geologic, paleobiologic, and astronomic data related to the Phanerozoic era lasting from the beginning of the Cambrian period up to the present time.

Keywords: biosphere, Cosmos, galactic year, biospheric crises.

Введение

Идея о влиянии космоса на планету Земля и ее биосферу давно привлекла внимание исследователей. В ряде работ, начиная с 1982 г., эта проблема неоднократно рассматривалась и мною .

Расчет галактической орбиты Солнца впервые произвел П.П. Паренаго в 1952 г. и определил продолжительность галактического года - время обращения Солнца вокруг центра Галактики в 212 млн лет. Среднее угловое движение Солнца за 1 млн лет было им принято округленно равным 1,7°, хотя на самом деле по его данным оно равно 1,68°. В соответствии с этим, период обращения Солнца мог быть определен П.П. Паренаго и несколько большим, равным 214 млн лет.

Опираясь на периодичность земных геологических и биологических событий и геохронологию, я первоначально определил продолжительность галактичес-

кого года в 220 млн лет, а несколько позже, в соответствии с более точной геохронологической шкалой У.Б. Харленда и др. , - в 216 млн лет. Несколько позже Ю.А. Заколдаевым на основе анализа геохронологических шкал длительность галактического года была определена в 217 млн лет.

Как видим, расхождения в определении галактического года у разных авторов невелики и составляют всего доли процента, т.е. можно говорить о почти идеальном соответствии.

Очень важным в работах астрономов А.А. Шпиталь-ной, А.А. Ефремова и Ю.А. Заколдаева оказалось их заключение о том, что в результате сложения орбитальной скорости Солнца с абсолютной скоростью Галактики относительно открытого в 1965 г. микроволнового излучения Вселенной абсолютная скорость Солнца при его движении по орбите значительно изменяется,

достигая максимума (> 800 км/с) в апогалактии и минимума (400 км/с) - в перигалактии. По мнению авторов это должно приводить к периодическим изменениям массы тел Солнечной системы, к пульсациям размеров этих тел и изменению светимости Солнца.

А.Г. Шленов произвел расчеты приращения массы (Am), мощности, получаемой от физического вакуума (АР), и изменения светимости Солнца и планет (табл. 1). В соответствии с этими расчетами увеличение светимости Солнца каждый галактический год в апогалактии возрастало до 5,3- 1028 эрг/с, т.е. в 4 раза.

Палеографические свидетельства существования галактического года

Выше была теория. А есть ли факты, подтверждающие эти теоретические построения? Да, такие подтверждения имеются. О значительных похолоданиях на Земле свидетельствуют ледниковые события. Они проявлялись на Земле в основном в периоды интенсивного базальтового вулканизма, приводившего к замутнению атмосферы, выделению сернистых газов с образованием сернистых аэрозолей, рассеивающих солнечные лучи и уменьшающих солнечную радиацию, достигающую поверхности Земли. По данным при прохождении Солнцем орбиты со стороны перигалактия, т.е. в холодный период, проявилось 12 гляциальных событий суммарной продолжительностью около 58 млн лет, а при прохождении Солнцем орбиты со стороны апога-лактия - только три гляциальных события общей продолжительностью около 14 млн лет.

В теплые летние полупериоды галактических лет, когда Солнце находилось на орбите со стороны апогалактия, биопродуктивность наземной растительности значительно возрастала, вследствие чего в теплые летние полупериоды образовалось 84,9% мировых запасов углей, а в холодные, когда Солнце находилось на орбите со стороны перигалактия, - всего 15,1% углей. Нефть является продуктом термической деструкции накопленного в осадках планктоногенного органического вещества морей. В теплые летние полупериоды образовалось 84,7% мировых запасов нефти, а в холодные - только 15,3%.

Помимо этого есть и прямые подтверждения летних и зимних галактических периодов, основанные на определении палеотемператур по соотношению изотопов кислорода (18О/16О) в органических остатках.

E.J. Barron показал, что средняя глобальная температура на поверхности Земли «летом» в меловом периоде была на 6-12 °С выше, чем в настоящее «зимнее» время. Температура глубинных океанических вод была около 15 °С .

Рис. 1. Изменение средней температуры на поверхности Земли в третьем галактическом году (К1-0) от середины лета до начала зимы. По данным .

Свидетельством теплого климата и безморозных зим являются также остатки саламандр, ящериц, черепах и крокодилов даже в конце галактического лета в высоких широтах за арктическим кругом.

Рис. 1 иллюстрирует, по данным Т.1. Сго^^еу , существенное снижение глобальной температуры на Земле от мелового периода, когда Солнце находилось в апогалактии, до современного «зимнего» периода от 20 °С до 10 °С в последнюю ледниковую эпоху и до 14 °С в межледниковое время.

Таким образом, реальность проявления галактических времен года - лета при прохождении Солнца по орбите в области апогалактия, а зимы при прохождении им перигалактия - не вызывает никаких сомнений.

С учетом астрономических расчетов, стратиграфии, основанной на изучении фауны и флоры, и геохронологии, основанной на радиоактивных датировках возраста пород, на рис. 2 представлена орбитальная геохронологическая шкала для фанерозоя, имеющего продолжительность во времени около 600 млн лет.

Продолжительность обращения Солнца вокруг центра Галактики принята в 216 млн лет. Отсчет геологического времени производился от нулевого (современного) момента, от точки на орбите, в которой Солнце находится в настоящее время, недалеко от перигалактия, в направлении обратном движению Солнца. После нанесения на орбиту датировок всех периодов и эпох фанерозоя можно убедиться, что в кембрийском, каменноугольном и меловом периодах Солнце действительно находилось на орбите со стороны апогалактия, а в силурийском,

Таблица 1

Результаты расчетов приращений массы мощности, получаемой от физического вакуума и светимости Земли и Солнца по А.Г. Шленову

Абсолютная скорость Солнца (км/с) Земля Солнце

Am, г АР, эрг/с AL, эрг/с Am, г АР, эрг/с AL,эрг/с

400 0,53-1022 0,44 Ю21 0,36 ю15 0,77 -1027 1,48 1026 1,33 -1028

800 2,12 1022 1,78 -1021 1,42 1015 7,07 -1027 5,92 1026 5,33 1028

Приращения 1,6 1022 1,3 1021 1,11015 5,3 1027 4,4 1026 4,0 1028

Рис. 2. Орбитальная геохронологическая шкала с климатическими сезонами галактического года.

Орбита дана по П.П. Паренаго . А - апогалактий, П - пери-галактий. Датировки возраста границ периодов и эпох даны по У.Б. Харленду и др. . Оцифровка времени по орбите дана в млн лет от современного момента для одного оборота Солнца. В предшествующих оборотах время определяется как n+216 и n+(216 х 2). I, II, III - галактические годы фанерозоя. Геологические периоды: С - кембрийский, О - ордовикский, S - силурийский, D - девонский, C - каменноугольный (карбоновый), P - пермский, T - триасовый, J - юрский, K - меловой, P - палеогеновый, N - неогеновый.

триасовом периодах и в неогеновое время - со стороны перигалактия. Начало кембрийского, каменноугольного и мелового периодов, с которых начинаются галактические годы, оказалось в одной точке орбиты со стороны апогалактия, т.е. в начале «галактического лета», их середины - в области апогалактия, в разгаре галактического лета. Симметрично началу «лета» на другой стороне орбиты выделяется конец «лета», а симметрично лету -зимний галактический период в области перигалактия, а также промежуточные между ними «осенний» и «весенний» галактические сезоны.

Продолжительность галактического лета составляет около 98 млн лет, зимы - 68 млн лет, а весны и осени - по 25 млн лет. Конечно, какая-то условность в выделении границ галактических времен года имеется, но, как увидим далее, происходившие на Земле сезонные процессы эту схему подтверждают.

За более чем 200 лет с начала XIX века, после работ

B. Смита и Ж. Кювье, палеоботанические и палеозоологические исследования привели к накоплению огромного материала по характеристике десятков тысяч видов растений и животных биосферы Земли, существовавших в прошлые геологические эпохи. Это была поистине грандиозная работа многих тысяч палеобиологов в разных странах мира. Постепенно появились сведения о времени первого появления тех или иных организмов, их расцвета и вымирания.

Мною были использованы материалы ряда обобщающих работ, в основном в области палеоботаники

C.В. Мейена . Наиболее чутко на проявление теплых

Рис. 3. История плауновидных и членистостебельных растений: 1 - плауновидные, 2 - членистостебельные.

и холодных сезонов галактических лет должна была реагировать, разумеется, наземная растительность.

Из споровых растений первыми появились на Земле в девонское время плауновидные. Это произошло в конце зимнего галактического сезона (рис. 3).

Весной их распространенность и разнообразие возросли, а в середине лета (С1-С2), когда Солнце находилось в области апогалактия, плауновидные достигли максимального расцвета. Они играли существенную роль в формировании болотных и мангровых зарослей на побережье морей. Некоторые плауновидные растения имели довольно толстые стволы (до 40 см).

В конце лета (Р1) и осенью (Р2-Т1) распространенность и разнообразие плауновидных растений значительно уменьшились, а зимой (11-12) - достигли минимума. Кое-как пережив галактическую зиму, они не возродились ни весной (13), ни летом (К1-К2) следующего галактического года и в таком состоянии дожили до следующего зимнего периода ^-К), представленные сейчас немногими травянистыми растениями.

Членистостебельные растения впервые появились в начале галактической весны ^2), достигли максимального распространения, разнообразия и расцвета в летний галактический период (С1-С2). С конца лета их распространенность начала уменьшаться (Р1-Р2), еще более заметно - осенью (Р2-Т1), а зимой (11-12) достигла критического минимума. Больше членис-тостебельная растительность уже не возродилась и на таком же низком уровне в растительном сообществе просуществовала в течение всего следующего галактического года (К1-К) до современного момента, представленная сейчас единственным родом Equisetum.

Среди споровой растительности сходной картиной развития, в зависимости от галактической климатической сезонности, характеризуются многие порядки класса папоротников (рис. 4).

Зигоптериевые папоротники появились впервые в конце весны ^3), достигли максимальной распро-

Рис. 4. История папоротников:

1 - зигоптериевые, 2 - ботриоптериевые, 3 - мараттиевые, 4 - ка- тием в теплые полупериоды галактических лет:

ламитовые, 5 - полиподиевые.

1 - арбериевые, 2 - кордаитовые, 3 - тригонокарповые, 4 - хвойные.

страненности летом (С1-С2). К концу летнего периода их распространенность значительно уменьшилась, а к началу осени (Р1) они уже полностью вымерли.

Почти так же характеризуется и история порядка ботриоптериевых папоротников. Появились в конце галактической весны ^3), максимального распространения достигли летом (С2-С3) и полностью вымерли осенью (Т1).

Таким образом, зигоптериевые и ботриоптериевые папоротники в галактическом смысле были, так сказать, однолетними растениями, появлявшимися в конце весны, достигавшими расцвета летом и вымиравшими осенью.

Папоротники порядка мараттиевых (рис. 4) появились в конце галактической весны - начале лета максимального развития достигли в летний период (С3), осенью (Р2-Т1) их распространенность в растительных сообществах сократилась, а зимой (Т3-12) достигла критического минимума. Не возродились они потом ни весной, ни летом (К1-К2) следующего галактического года и в таком состоянии дожили до настоящего времени. Точно так же вели себя и папоротники порядка каламитовых.

Рис. 3 и 4 хорошо иллюстрируют, что из споровых растений классы плауновидных и членистостебельных растений и несколько порядков класса папоротников максимального развития достигали в летний галактический период, когда Солнце находилось на орбите со стороны апогалактия, а зимой характеризовались минимальной распространенностью или вымирали полностью.

Однако есть и исключение. Папоротники порядка полиподиевых развивались принципиально по-другому. Впервые они появились в конце летнего сезона (Р1), осенью их распространенность начала возрастать, затем постепенно и непрерывно возрастала в зимнем (Т3-12) и весеннем (13) периодах. Максимального распространения они достигли в летний сезон

следующего галактического года (К1-К2) и в таком состоянии широкого распространения в растительных сообществах дожили до настоящего времени, относящегося к зимнему галактическому сезону.

Порядок полиподиевых папоротников, в отличие от других, оказался практически независимым от галактической климатической сезонности. В настоящее время известно около 300 родов папоротников.

Рис. 5 иллюстрирует распространенность, в зависимости от галактического времени года, нескольких крупных порядков отдела голосеменных растений.

Арбериевые появились в истории Земли в начале летнего сезона (С1), затем они достигли наибольшей распространенности во второй половине летнего сезона (С3-Р1). Осенью (Р2-Т1) их распространенность сократилась, а в начале зимнего сезона (Т3) они уже полностью вымерли.

Почти так же вела себя и кордаитовая растительность. Она появилась впервые в начале лета (С1), достигла максимального распространения и развития во второй половине лета (С3-Р1), а осенью уже полностью вымерла.

То же самое характерно и для порядка тригонокар-повых растений. Они впервые появились в начале лета (С1), максимального распространения и расцвета достигли в разгар галактического лета (С2-С3). Но уже к концу летнего периода (Р1) их распространенность значительно уменьшилась, а в начале осени (Р2) они полностью вымерли.

Таким образом, все эти три крупных порядка голосеменных растений в галактическом смысле являются однолетними - появляются в начале лета, достигают расцвета в разгар лета, а осенью (или в начале зимы) полностью вымирают.

Существенно по-иному вели себя более холодолю-бивые хвойные растения. Они появились впервые во второй половине лета второго галактического года (С2). Осенью (Р2) их распространенность достигла

1 - чекановскиевые, 2 - гинкговые, 3 - беннетитовые, 4 - кейтониевые.

Рис. 7. История некоторых групп животного мира: 1 - трилобиты, 2 - рыбы костные и хрящевые, 3 - амфибии.

максимума, затем несколько уменьшилась зимои и осталась почти такоИ же в течение третьего галактического года (К1-К).

Как видим, многие представители голосеменноИ растительности, как и споровои, отличались широким распространением на летнеИ, «теплой» половине орбиты Солнца со стороны апогалактия и полным отсутствием, или существенно меньшей распространенностью, на зимней половине орбиты.

Однако как полиподиевые папоротники, так и некоторые порядки голосеменноИ растительности характеризуются принципиально иной логикой развития (рис. 6).

Порядок чекановскиевых растений появился в конце летнего галактического сезона (С3-Р1). Распространенность их постепенно возрастала в конце лета и осенью (Р2-Т1), достигала максимума в зимний период (11-12) и осталась почти такой же до весны (13). Летом следующего галактического года (К1-К2) распространенность чекановскиевых постепенно уменьшалась, и, наконец, в позднем мелу вблизи апогалактия они полностью вымерли и исчезли из геологической летописи, просуществовав практически целый галактический год - появились в конце лета второго галактического года и вымерли в конце лета следующего, третьего галактического года.

Порядок гинкговых растений впервые появился почти одновременно с чекановскиевыми в конце летнего сезона (С3-Р1). Распространенность их возрастала осенью и в начале зимы, а далее оставалась практически постоянной до конца галактического года. Летом следующего галактического года (К1-К2) распространенность гин-кговых постепенно уменьшалась, достигла минимума к концу лета (Р1) и осталась почти такой же осенью (Р2) и в начале зимы - до настоящего времени.

Порядок беннетитовых растений впервые появился зимой второго галактического года (Т2-Т3). Распространенность беннетитовой растительности достигла максимума зимой и весной (11-13), а летом третьего галактического года они уже вымерли (К2). Порядок

кейтониевых растений также появился впервые зимой (Т3-11), зимой и весной их распространенность достигла максимума, а в начале лета следующего галактического года (К1) они уже полностью вымерли (рис. 6).

Лишь наиболее молодая и наиболее совершенная покрытосеменная растительность демонстрирует независимость от галактических времен года. Она появилась в начале третьего галактического года, т.е. в начале лета (К1), а далее ее распространенность и разнообразие последовательно возрастали в течение всего лета (К1-Р1), осенью (-Р2--Р3) и в начале зимы (N-Q).

Животный мир, особенно водный, в значительно меньшей степени, чем наземная растительность, испытывает зависимость от галактических сезонных изменений климата. И все-таки для ряда групп фауны зависимость от галактических времен года проявляется (рис. 7).

Трилобиты, например, появились в первом фанеро-зойском галактическом году в начале лета (€1) и достигли максимального развития во второй половине лета (С3-О1). Осенью (О2) их распространенность заметно уменьшилась, а зимой (8^2) достигла критического минимума. Не возродились они ни весной ^3), ни летом следующего галактического года, и вымерли окончательно во второй половине лета (С3-Р1).

Костные и хрящевые рыбы появились в конце зимнего сезона первого галактического года. Весной их распространенность и разнообразие возросли, в середине лета второго галактического года (С1-С2) достигли максимального развития. После этого в конце лета и осенью их распространенность уменьшилась и достигла минимума в середине зимы (11). Весной распространенность костных и хрящевых рыб снова постепенно возрастает, достигает второго максимума летом третьего галактического года (К2-Р1) и не снижается уже до настоящего времени.

Амфибии впервые появились в конце галактической весны максимально развились летом (С3-Р1).

Осенью (Р2-Т1) их распространенность уменьшилась, а зимой (Т3- 11) достигла минимума, и такой незначи-

Рис. 8. Проявления геобиособытий на орбите Солнечной системы вокруг центра Галактики: Н11 - галактические годы, - кризисные события.

тельной оставалась уже на протяжении всего третьего галактического года (13-Ы) (рис. 7).

Использованные самые разнообразные данные и обобщения многих независимых исследователей, работавших в разных областях палеонтологии и климатологии, будучи привязаны к орбитальной геохронологической шкале, находятся в хорошем соответствии между собой и приобретают дополнительный новый смысл, который был неведом их авторам.

Проблема 30-миллионолетней периодичности биосферных кризисов

На фоне длительных климатических периодов, обусловленных обращением Солнца вокруг центра Галактики и заметно влиявших на биосферу Земли, мною была выявлена более мелкая 30-миллионолетняя периодичность интенсивного проявления целого ряда геологических процессов и одновременно проявляющихся с ними кризисных биосферных событий - семь событий в течение галактического года.

В сравнительно кратковременные периоды (от 1-2 до 3-4 млн лет) через каждые 30-32 млн лет усиливался рифтогенез, оставлялись глубинные разломы, проявлялся интенсивный базальтовый вулканизм, сопровождавшийся выносом в среду обитания организмов урана, фосфора, ряда тяжелых металлов (Мо, V, Си, Zn, N1, Сг, Ag, Аи, лб), редкоземельных элементов ^а, Се, Рг, Nd, Бш, У, а иногда и 1г).

В эти же кратковременные периоды в морях, а иногда и в континентальных бассейнах происходило накопление осадков с аномально высокой (до 10-20-30%) концентрацией планктоногенного органического вещества, обогащенного ураном, фосфором и рядом тяжелых металлов. На заражение среды обитания ураном биосфера реагировала глобальными вспышками биопродуктивности примитивных одноклеточных водорослей и цианобактерий, интенсивным вымиранием существовавших и возникновением многих новых видов организмов . Связь этих кратковременных событий с

космосом подтверждается тем, что они происходили каждый галактический год через 30-32 млн лет на одних и тех же участках солнечной орбиты (рис. 8).

Позже появилась работа М.Я. Яашрто и Я.Б. , в которой они пришли к той же периодичности: периодичность базальтовых излияний составляет по их данным 32± 1 млн лет, периодичность карбонати-товых интрузий - 34± 2 млн лет; периодичность спре-динга литосферных плит - 34± 2 млн лет; образования импактных кратеров вследствие ударов о Землю астероидов - 32 ± 1 млн лет; проявления обусловленных этими ударами массовых вымираний - 24-33 млн лет.

Причиной этих событий, по мнению М.Р. Рампино и Р.Б. Стотерса, является регулярное пересечение Солнцем галактической плоскости со сгущениями материи, происходящее при вертикальной осцилляции Солнца во время его движения по орбите вокруг центра Галактики.

При разном понимании сущности этих кризисных биосферных событий положительным является то обстоятельство, что мы независимо пришли к 30-мил-лионолетней периодичности биосферных кризисов, происходивших в результате воздействия космоса на Землю и ее биосферу.

В течение двух с половиной галактических лет фа-нерозоя (около 600 млн лет), по моим данным, проявилось 17 кризисных биосферных событий. Большая их часть проявилась вблизи или непосредственно на границах геологических систем или их отделов, что вполне понятно - эти границы и устанавливались по существенным изменениям фауны и флоры.

При кларковой концентрации урана в осадочных породах 3,240-4% в обогащенных органическим веществом осадках этих эпох концентрация урана нередко превышает ее в 30-50-250 раз, а концентрация урана в органическом веществе превышает нормальную для современной эпохи в 300-700-1600 раз.

Согласно моим расчетам концентрация урана в водах морей и в континентальных бассейнах по сравнению с современной (2,8-340-7%) в эти эпохи повышалась в десятки, сотни, а иногда и в тысячу раз.

Недаром на первом этапе создания атомной бомбы, когда еще не были разведаны богатые урановые месторождения, обогащенные планктоногенным органическим веществом и ураном осадки на границе кембрия и ордовика разрабатывались в Прибалтике как источник для получения урана, а потом разрабатывались и «рыбные слои» - скопления обогащенных ураном скелетов рыб, испытавших массовое вымирание.

Рассмотрим типичные примеры проявления кризисных биосферных событий, характеризующихся интенсивным уранонакоплением и повышением радиоактивности среды.

В позднем девоне в восточной части Русской платформы вплоть до Урала накапливались морские осадки доманиковой свиты. Морской мелководный бассейн по всем показателям был благоприятным для обитания фауны, с нормальной соленостью вод, с нормальным кислородным режимом, с преобладанием глубин до 100 м. Но если в более древних и более молодых осадках концентрация органического вещества не превышала 0,3-0,4%, то в доманиковых она достигала 10-20%, что явно свидетельствует о проявлении вспышки биопродуктивности фитопланктона. Обилие пищи, казалось бы, благоприятствовало широкому распространению морской фауны, однако это было

Брахиоподы

Стратиграфия

Формация Форт-Пейн

Формация Маури

Литология

Конодонты

Аммониты, кол-во родов

Фораминиферы, кол-во родов

Споры, кол-во родов 13 14 10

Пыльца, 10 9 5 8

3 £1 Л Ъ ^ ^ w 1

Рис. 9. Зависимость смены фауны и флоры в позднедевонскую эпоху на Русской платформе от интенсивности накопления урана.

Рис. 10. Зависимость смены фауны конодонтов в отложениях поз-днедевонской чаттанугской свиты Северной Америки от интенсивности накопления урана по данным .

Рис. 11. Зависимость смены фауны и флоры в верхнеюрских отложениях Западной Сибири от интенсивности накопления урана.

не так. В осадках совместно с биопродукцией фитопланктона происходило накопление урана, а также Cu, V, Mo, Pb, Zn. Судя по соотношению и/Сорг, концентрация U в водах превышала нормальную не менее чем в 20 раз. В результате этого на пике накопления U (рис. 9) видовой состав фитопланктона значительно сократился, хотя и давал огромную биопродукцию.

Значительно сократился видовой состав форами -нифер, а по окончании радиоактивной эпохи снова возрос. Существовавшие до этого виды брахоипод вымерли, в радиоактивную эпоху возникло несколько новых видов, но они тоже быстро вымерли. Появившиеся в конце радиоактивной эпохи несколько новых видов прослеживаются в более молодых осадках. Кораллы, криноидеи, мшанки и губки в радиоактивную эпоху совсем исчезли, и появились снова только после ее окончания. Что касается птериопод и наутилид, то их видовое разнообразие в радиоактивную эпоху значительно возросло, а затем снова уменьшилось.

Судя по спорам и пыльце наземных растений, на прилегающей к морю суше они также испытали кризис во время радиоактивной эпохи.

Примерно то же происходило в это время и в Америке, судя по данным американских исследователей. W.H. Hass изучала фауну , a L.C. Conant и V.E. Swan-son - распределение урана в осадках. Мне осталось лишь сложить результаты их исследований вместе. Осадки позднедевонской чаттанугской свиты, богатые план-ктоногенным ОВ, отлагались в мелководно-морских условиях с нормальным кислородным режимом. Вспыш-

ка биопродуктивности фитопланктона обусловила накопление в осадках до 10-20% органического вещества. Концентрация накопившегося вместе с ОВ урана составляла до 20-10"3%, т.е. в 60 -70 раз превышала нормальную. По соотношению и/Сорг следует считать, что концентрация и в водах бассейна превышала нормальную в сотни раз. Это позволяет думать, что воздействие урана и радиоактивности на организмы в чаттанугском море было еще интенсивнее, чем в доманиковом.

Широко распространенные в доманиковых осадках готиатиды и птероподы отсутствуют совершенно. Из планктонных организмов изредка встречаются радиолярии, из нектона - редкие остатки рыб. Редко встречаются остатки плавающих водорослей РоегзНа и Рго1о8аМпа, иногда остатки наземных растений Са1-Нху1оп.

При огромной первичной биопродукции и обилии пищи почти полное отсутствие фауны, за исключением лингул и конодонтов, представляется непонятным, если, конечно, не принимать во внимание зараженность бассейна ураном.

Детально изученный разрез осадков позволяет проследить влияние интенсивности уранонакопления на смену видов единственно широко распространенной фауны - конодонтов (рис. 10).

В нижнем слое осадков с еще низкой концентрацией урана выявлено 12 видов конодонтов, семь из которых мгновенно вымирают в начале радиоактивной эпохи. Вместе с тем, в начале ее появляется еще четыре новых вида, которые затем вымирают при отложении чер-

ных сланцев с максимальном концентрацией урана. Но происходит не только вымирание: одновременно на пике уранонакопления появляются 12 новых видов конодонтов, 10 из которых вымирают в конце радиоактивной эпохи. Тогда же появляются четыре новых вида конодонтов, которые прослеживаются и в более молодых осадках с низкой концентрацией урана.

Развитие фауны конодонтов при проявлении радиоактивной эпохи происходило не постепенно, а с проявлением вспышек видообразования и вымирания организмов, которые полностью контролировались изменениями уровня зараженности бассейна ураном.

Синхронное накопление радиоактивных осадков в конце девонского времени в разных районах мира свидетельствует о том, что радиоактивные эпохи проявились глобально.

Другой пример кризисного биособытия - во время накопления позднеюрских осадков с аномально высокой концентрацией урана и планктонного органического вещества. Оно проявилось в Западной Сибири на пространстве около 1 млн кв. км, в восточной части Русской платформы, в Карском, Баренцевом и Северном морях вплоть до Англии, в некоторых районах Западной Европы, в Южной Атлантике.

В Западной Сибири это позднеюрская баженовс-кая свита. Наличие в ней хотя и сравнительно редкой и однообразной бентосной фауны позволяет считать, что кислородный режим в баженовском море был нормальным. Огромная биопродукция фитопланктона определила накопление в осадках 10-20% органического вещества, обогащенного ураном. Простейшие водоросли, дававшие эту биопродукцию, имеют округлую форму без какой-либо скульптуры, размер их до 20 мкм.

Аммониты (рис. 11) характеризуются быстрой сменой форм на уровне рода. В начале радиоактивной эпохи появляется семь новых родов аммонитов, но они почти сразу вымирают. На пике уранонакопления появляются еще два новых рода, но сразу же вымирают. По окончании радиоактивной эпохи появляется еще несколько новых родов аммонитов.

У фораминифер из 26 родов, существовавших до начала радиоактивной эпохи, на пике уранонакопления остается всего шесть. В начале, в разгаре и во время окончания эпохи уранонакопления появляются и тут же вымирают пять короткоживущих родов.

О том, что радиоактивность среды повышалась не только в морском бассейне, но и на прилегающей к нему суше, свидетельствует значительное обеднение комплекса спор и пыльцы наземных растений.

На Волге удалось произвести послойное изучение осадков позднеюрской эпохи (рис. 12). Накопление глинистых осадков и богатых органическим веществом сланцев (до 30-34%) с высокой концентрацией урана происходило в конце юрского периода (волжский век) до начала мелового периода. До начала радиоактивной эпохи комплекс аммонитов был представлен девятью родами, пять из которых мгновенно вымерли, как только возросла интенсивность уранонакопления, остальные четыре вымерли позже, синхронно с одним из наиболее мощных пиков уранонакопления. Конечная стадия эпохи уранонакопления характеризуется быстрым появлением и столь же быстрым вымиранием 19 родов аммонитов. И только один род аммонитов, появившийся в конце радиоактивной эпохи, перешел

Рис. 12. Зависимость смены фауны аммонитов и фораминифер в верхнеюрских отложениях от интенсивности накопления урана.

в меловые отложения, формировавшиеся уже при низкой радиоактивности среды.

Изменения бентосной фауны фораминифер начались несколько раньше, чем пелагической фауны аммонитов, в конце ранневолжского времени. Видимо, повышение концентрации урана на дне бассейна начало ощущаться раньше, чем в поверхностных водах. Существовавшие пять видов фораминифер одновременно вымерли на границе нижнего и среднего отделов волжского яруса. Однако в это же время появилось семь новых видов. Они были широко распространены до проявления первого пика уранонакопления, а затем периодически то появлялись, то полностью исчезали во время накопления слоев горючих сланцев с высокой концентрацией урана. Все они вымерли одновременно с аммонитами на одном из наиболее мощных пиков уранонакопления. Конец радиоактивной эпохи, как и у аммонитов, характеризуется быстрым появлением и быстрым вымиранием 10 новых видов фораминифер. Более подробные сведения можно найти в .

Примерно так же происходили биосферные события и во время проявления других эпох интенсивного накопления урана и высокой радиоактивности среды. Значительно возрастала изменчивость фауны и флоры, реализовавшаяся как в вымирании ранее существовавших видов, так и в появлении новых видов организмов.

В эти эпохи испытывали интенсивную изменчивость не только ранее существовавшие группы организмов, но неоднократно появлялись принципиально новые типы растений и животных. Например, зигоптерие-вые, ботриоптериевые, мараттиевые и каламитовые

папоротники впервые появились в радиоактивную эпоху в конце позднего девона. Чекановскиевые и гинкговые растения впервые появились в радиоактивную эпоху на границе карбона и перми. Трилобиты, как и другая скелетная фауна, впервые внезапно появились в радиоактивную эпоху на границе венда и кембрия. Хрящевые и костные рыбы впервые появились в радиоактивную эпоху в конце силура - начале девона, а амфибии - в позднеюрскую радиоактивную эпоху.

Первые наземные четвероногие животные Chtyostega найдены в отложениях радиоактивной эпохи на границе девона и карбона. Они занимают промежуточное положение между кистеперыми рыбами группы ренидистий и лабиринтодонтами. Обладают хвостовым плавником и конечностями настоящих четвероногих животных, возникшими, вероятно, в результате крупных мутаций за счет значительного изменения плавников.

В следующую радиоактивную эпоху на границе перми и триаса четвероногие рептилии дают начало первым летающим животным - птерозаврам. Их единственное отличие от обычных рептилий заключается только в том, что крайние четвертые пальцы их передних конечностей («мизинцы») при том же количестве фаланг приобрели размер вдвое больше длины тела животного, а свисающие с них кожные перепонки образовали крылья.

В осадках позднеюрской радиоактивной эпохи найдены первые архаичные птицы. От маленьких динозавров они почти не отличались, кроме сильно изменившихся передних конечностей и перьев вместо роговых пластин.

Третья успешная попытка летать, на этот раз у млекопитающих, состоялась в эоценовую эпоху радиоактивности. Скелет летучей мыши от обычного насекомоядного млекопитающего отличается, в основном, только тем, что четыре пальца ее передних конечностей при нормальном количестве фаланг в результате мутации стали аномально длинными, достигающими длины тела животного, а кожа между ними образовала «крыло».

Другая типичная форма мутаций, особенно сильная у конечностей при значительной их редукции, обусловила возникновение у рептилий и млекопитающих «возвратных» рыбообразных форм: в конце поздне-пермской радиоактивной эпохи - ихтиозавров, а в эо-ценовую радиоактивную эпоху - древних китов.

После окончания позднеюрской радиоактивной эпохи появились первые змеи, самая молодая, но в то же время самая деградировавшая группа рептилий. От исходных рептилий они отличаются удлинением тела (число позвонков до нескольких сотен), редукцией конечностей, утратой одного легкого, отсутствием наружного уха и барабанной перепонки, глазами с фиксированным прозрачным веком.

В некоторые радиоактивные эпохи появлялись и прямо-таки «невероятные» мутации, приводившие к возникновению организмов совершенно абсурдного строения. Примеры их можно найти в работах Л.Б. Яошег .

Заключение

Рассмотренные материалы позволяют заключить, что историю Земли и ее биосферы следует рассматривать не только по выделенным на эмпирической основе геологическим периодам, а с учетом естественных галактических периодов. Долговременные периоды (216-217 млн

лет) - галактические годы - соответствуют по времени оборотам Солнца вместе с Землей вокруг центра Галактики. Как было показано, они определяют последовательную смену галактических климатических сезонов. Многие крупные группы растений и животных биосферы достигали максимального расцвета в теплые летние сезоны галактических лет, а в зимние - разнообразие и распространенность многих из них достигала критического минимума, многие полностью вымирали.

В летние галактические периоды, несомненно, возрастала и биопродуктивность биосферы, о чем свидетельствует образование преобладающей части мировых запасов угля и нефти (> 80%) на этих временных отрезках.

На фоне долговременной периодичности проявлялась и более кратковременная периодичность не менее важных биосферных событий, также обусловленных влиянием на Землю и ее биосферу изменявшихся космических условий.

В течение каждого галактического года проявлялось семь таких событий, разделяющих его на семь 30-32-мил-лионолетних этапов («месяцев») - 31 млн лет х 7 = 217 млн лет - и составляющих галактический год.

После публикации L.M. Alvares о массовом вымирании фауны, в том числе и знаменитых динозавров, в конце мелового периода в результате удара о Землю и взрыва крупного астероида эта точка зрения на Западе стала популярной, именно ее и разделяют M.R. Rampino и R.B. Stoters .

Проведенные мною исследования свидетельствуют, что проявление этих биосферных кризисов с периодичностью около 30 млн лет происходило значительно более сложно и не мгновенно, а на протяжении нескольких миллионов лет. К тому же во время их проявления происходило не только интенсивное вымирание фауны и флоры, но и быстрое появление многих новых видов организмов, в том числе и совершенно нового типа.

Конечно, ударом и взрывом космического тела можно объяснить вымирание фауны, но появление многих новых видов и принципиально новых типов животных и растений ударом и взрывом космического тела никак не объяснить, каким бы мощным он ни был.

Будущее покажет, кто прав, но в любом случае проявление этих, обусловленных космосом, периодических биосферных кризисов необходимо учитывать при анализе развития биосферы.

Рассмотренные явления заставляют задуматься и об общих концепциях развития органического мира Земли. Эволюция, вследствие мелкой случайной изменчивости организмов и естественного отбора по Дарвину, отражает только одну сторону процесса.

Периодическое проявление биосферных кризисов, во время которых происходило как интенсивное вымирание, так и интенсивное образование новых видов и даже принципиально новых типов организмов, заставляет вспомнить и о более ранней концепции развития органического мира с проявлением кратковременных революционных эпох, вызывавших смену фауны и флоры (Ж. Кювье, 1812 г.).

Биосфера существует на Земле 3,5 млрд лет, то есть 16 галактических лет, и пережила их прогрессивно эволюционируя, несмотря на существенные периодические изменения космических условий.

Что же касается человека, то если даже иметь в виду не

современный вид Homo sapiens, а его предшественника Homo habilis, он появился на Земле всего 3 млн лет назад, то есть прожил всего 0,01 долю последнего галактического года. На этом фоне он пока, несмотря на свой разум, представляется чем-то вроде мотылька-однодневки.

Сейчас человечество озабочено возможностью глобаль-

ного потепления на 1-2 °С в результате неумеренного сжигания им топлива. И это действительно серьезная проблема.

Но следует иметь в виду, что в далекой перспективе человечеству предстоит пережить, вследствие изменения климата и среды обитания под влиянием изменяющихся космических условий, еще более значительные трудности.

Литература

1. Ефимов АЛ, Заколдаев Ю.А., Шпитальная А.А.. Астрономическое обоснование абсолютной геохронологии // Проблемы исследования Вселенной. - М.-Л., 1985. - Вып. 10. - С. 185-201.

2. Мейен С.В. Составы палеоботаники. -М.: Недра, 1986.

3. Неручев С.Г. Уран и жизнь в истории Земли. Изд.1-е. Л.: Недра, 1986. 206 с.; изд. 2-е доп. СПб.: ВНИГРИ, 2007. 326 с.

4. Паренаго П.П. О гравитационном потенциале Галактики. 2 // Астрономический журнал. - 1952. - № 3. - С. 245-287.

5. Харленд УБ, Кокс АВ, Ллевеллин П.Г. и др. Шкала геологического времени. - М.: Мир, 1985. - 139 с.

6. Шленов А.Г. Микромир, Вселенная, Жизнь. Изд. 4-е. Кн. 3. - СПб., 2009. - 82 с.

7. Шпитальная А.А., Заколдаев Ю.А., Ефимов А.А. Проблема времени в геологии и звездной астрономии // Проблемы пространства и времени в современном естествознании. - СПб., 1991. - Вып. 15. - С. 95-106.

8. Alvares L.M. Extraterrestrial cause for the Cretaceous-Tertiary extension // Science, 1980. - Vol. 208. N 4. - P. 44-48.

9. Barron E.J. Pre-Pleistocene Climates: Data and Models // In Climate and Geo-Sciences. Kluwer Academic Publishes. London, 1989. - P. 179-207.

10. Conant L.C., Swanson V.E. Chattanooga Shale and Related Rocks of Central Tennessee and Nearby Areas // Geol. Surv., Prof. Paper. -1961. - Vol. 357 - P. 1-91.

11. Growley T.J. Paleoclimate perspectives on greenhouse // In Climate and Geo-Sciences. Kluwer Academic Publishes. - London, 1989.

12. Hass W.H. Age and correlation of the Chattanooga Shale and the Mayry Formation // U.S. Geol. Surv., Prof. Paper. - 1956. - Vol. 286. - 47 p.

13. J. Kriest Plate-Tectonic Atlas, Shell. -Exploration Bulletin. - 1991, 285. - N 5.

14. Rampino M.R., Stoters R.B. Terrestrial mass extinction, cometary impacts and the Sun"s motion perpendicular to the galactic plane // Nature. - 1984. - Vol. 308. - P. 607-616.

15. Romer A.S. Vertebrate paleontology. -Chicago; London, 1966. - 687 p.

Одной из ключевых идей лежащих в основе теории Вернадского о ноосфере является то что человек не является самодостаточным живым существом живущим отдельно по своим законам он сосуществует внутри природы и является частью ее. Человечество само по себе есть природное явление и естественно что влияние биосферы сказывается не только на среде жизни но и на образе мысли. Это доказывает тот факт что в последнее время заметно активизировались планетарные геологические силы. Тема влияния солнечных пятен настолько опошлилась что было время...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск



Введение.

Центральной темой учения о ноосфере является единство биосферы и человечества. Вернадский в своих работах раскрывает корни этого единства, значение организованности биосферы в развитии человечества. Это позволяет понять место и роль исторического развития человечества в эволюции биосферы, закономерности ее перехода в ноосферу.

Одной из ключевых идей, лежащих в основе теории Вернадского о ноосфере, является то, что человек не является самодостаточным живым существом, живущим отдельно по своим законам, он сосуществует внутри природы и является частью ее. Это единство обусловлено, прежде всего, функциональной неразрывностью окружающей среды и человека, которую пытался показать Вернадский как биогеохимик. Человечество само по себе есть природное явление и естественно, что влияние биосферы сказывается не только на среде жизни, но и на образе мысли.

Но не только природа оказывает влияние на человека, существует и обратная связь. Причем она не поверхностная, отражающая физическое влияние человека на окружающую среду, она гораздо глубже. Это доказывает тот факт, что в последнее время заметно активизировались планетарные геологические силы. «...мы все больше и ярче видим в действии окружающие нас геологические силы. Это совпало, едва ли случайно, с проникновением в научное сознание убеждения о геологическом значении Homo sapiens, с выявлением нового состояния биосферы — ноосферы — и является одной из форм ее выражения. Оно связано, конечно, прежде всего, с уточнением естественной научной работы и мысли в пределах биосферы, где живое вещество играет основную роль». Так, в последнее время резко меняется отражение живых существ на окружающей природе. Благодаря этому процесс эволюции переносится в область минералов. Резко меняются почвы, воды и воздух. То есть эволюция видов, сама превратилась в геологический процесс, так как в процессе эволюции появилась новая геологическая сила. Вернадский писал: «Эволюция видов переходит в эволюцию биосферы».

Целью данного реферата является показать связь космоса и биосферы.


1. Космос и биосфера.

Проблема поиска связей земных и космических явлений до сих пор вызывает горячие дискуссии. Основатель гелиобиологии, науки о влиянии энергии космоса (прежде всего Солнца) на биосферу, А.Л. Чижевский по этому поводу писал: «Как случается всегда, когда делается какое-либо серьезное научное открытие, так и на этот раз стали появляться многочисленные догадки и высказывания о тех или иных воздействиях солнечных пятен на различные биологические явления. Большинство этих высказываний... не подтверждалось никакими доказательствами, хотя многие из них, по-видимому, в той или иной мере отвечали действительности. Широкая пресса подхватила все эти высказывания на лету и извратила их уже в окончательной степени. Тема влияния солнечных пятен настолько опошлилась, что было время, когда даже серьезные исследователи, подметив то или иное явление, связанное с влиянием пятен, не решались выступить с его опубликованием, боясь быть поднятыми на смех».

Первые научные публикации по конкретным проблемам солнечно-биологических связей появились в начале XIX века. Одной из первых (1801 г.) была работа Вильяма Гершеля о колебаниях цен на зерно в зависимости от солнечной активности, влияющей на урожайность. Подобные связи также были обнаружены в отношении толщины древесных годичных колец, изменений численности животных, физиологических и патологических состояний человека. Но наиболее полно и ярко это направление естествознания развито в работах А.Л. Чижевского. Проведя анализ огромного количества накопленных к тому времени фактов, свидетельствующих о влиянии энергии космоса на биосферу, он показал основные закономерности солнечно-биологических связей и выработал принципиальную концепцию космического влияния на различные уровни организации биосферы. В своей книге «Земное эхо солнечных бурь» он писал: «Вся Солнечная система является частью системы звезд нашей звездной Галактики. Быть может, и взрывные процессы на Солнце, и биологические явления на Земле суть соэффекты одной общей причины — великой электромагнитной жизни Вселенной. Эта жизнь имеет свой пульс, свои периоды и ритмы. Наука будущего должна будет решить вопрос, где зарождаются и откуда исходят эти ритмы».

В.И. Вернадский, который также работал над этой проблемой, подчеркивал, что взаимодействие биосферы с космосом не ограничивается только известными современной науке потоками солнечного излучения: «На основании всего эмпирического понимания природы необходимо допустить, что связь космического и земного всегда обоюдная и что необходимость космических сил для проявления земной жизни связана с ее тесной связью с космическими явлениями, с ее космичностью». Отсутствие данных об идентификации биоактивного компонента в спектре космических излучений заставило Чижевского выдвинуть гипотезу о существовании особого Z-излучения, ответственного за воздействие на биологические системы на клеточном уровне. Он считал, что данное излучение лежит в области милли- и сантиметровых радиоволн. Следует отметить, что данная проблема до настоящего времени не может считаться разрешенной.

В качестве индикатора солнечной активности в настоящее время чаще всего используется ряд чисел Вольфа — относительное число солнечных пятен. Одной из особенностей временного ряда чисел Вольфа является квазиодиннадцатилетний цикл Швабе. Значения чисел известны с 1749 г.

Во времена Чижевского наука не располагала такими мощными средствами исследования Солнца, как в настоящее время, но и поныне в цикличности солнечной деятельности много неясностей, в частности, в ней нет надежных методов долгосрочного прогнозирования ряда чисел Вольфа. Как отмечено, процесс очень сложен и включает большое количество квазипериодических компонентов, периоды которых меняются от 2 до 2300 лет, а временной интервал, за который имеются надежные данные, очень незначителен.

В настоящее время не вызывает сомнений наличие устойчивых статистических связей между солнечной активностью и климатическими показателями, установлено существование гелиовулканических связей, изучено воздействие солнечных циклов на атмосферную и океаническую циркуляцию.

В середине XX века изучение космического влияния на неорганические коллоидные системы привело к очень интересным результатам. Итальянский химик Д. Паккарди с 1951 по 1972 г. ежедневно ставил один и тот же эксперимент: в пробирки вносилось одинаковое количество коллоидного раствора хлорида висмута, после чего измерялась скорость его осаждения в зависимости от экранирования и других условий. Было проведено много тысяч экспериментов в различных точках земного шара по одной и той же методике. Результаты показали, что в 70% случаев, вне зависимости от географического положения места проведения опытов, скорость реакции увеличивается в пробирке, прикрытой тонким металлическим экраном. На основании данных результатов можно сделать вывод, что на течение реакции оказывает влияние электромагнитное излучение из космического пространства. Таким образом, по мнению Чижевского, если космические излучения действуют на неорганические коллоиды, то они не могут не оказывать влияния на реакции, протекающие с участием коллоидов, входящих в состав живых организмов. Этот «космический сигнал» связан как с солнечными вспышками, так и со следующими за ними магнитными бурями.

2. Солнечная активность и экономика

В работах по анализу солнечно-биологических связей Чижевский большое внимание уделял эпидемиям и разработал концепцию «эпидемических катастроф». Вместе с тем он предположил, что космические излучения могут оказывать воздействие на психическое состояние и поведение людей. В таком случае, как отмечал В.Н. Ягодинский, «если мы возьмем массовое проявление какой-либо однотипной деятельности, то, взятая в совокупности, она в своей динамике окажется в какой-то степени зависимой от внешней среды, возмущаемой солнечными факторами». Логично предположить существование зависимости и экономической деятельности социума от солнечной активности, и надо сказать, что это предположение родилось задолго до основания Чижевским гелиобиологии. Еще в конце XIX века английским ученым Джевонсом была развита теория, связывающая происхождение экономических циклов с солнечной активностью.

Согласно ей, «годы обильных урожаев» повторяются через каждые десять или одиннадцать лет, и «представляется вероятным, что торговые кризисы связаны с периодическим изменением погоды, затрагивающим все части света и возникающим, вероятно, вследствие усиленных волн тепла, получаемых от Солнца в среднем через каждые десять с лишним лет». Джевонс не оставил без внимания и возможные психологические мотивы хозяйственной деятельности: «Периодические крахи суть действительно по природе своей явления психологического порядка, зависящие от смены настроений уныния, оптимизма, ажиотажа, разочарования и паники. Но представляется весьма вероятным, что умонастроения деловых кругов, хоть они образуют собой основное содержание явления, могут определяться внешними событиями и в особенности обстоятельствами, связанными с урожаями».

Наиболее полным показателем совокупной экономической деятельности является объем продукции страны — валовой национальный продукт (ВНП). Необходимо отметить, что отсутствие надежных данных о динамике величин ВНП различных стран на длительном временном отрезке не позволяло определить для них наличие корреляции экономических показателей с солнечной активностью. Ко второй половине XX века такие данные стали более полными. В 1962 г. вышла работа Ангуса Мэддисона, в которой приводятся величины валового национального продукта различных стран мира за период 1870-1960 гг. Во временном интервале 1879-1954 гг. можно выделить семь глобальных экономических циклов. Таким образом, средняя продолжительность такого цикла составляет около 11 лет.

На рис. 1 показано изменение солнечной активности за период с 1860 г. На график нанесены точки, соответствующие минимумам величин ВНП по годам для различных стран, в которые происходило значительное замедление темпов экономического роста. Анализ приведенных данных показывает, что более чем в 90% случаев ухудшение экономических показателей происходило либо в годы экстремальных величин солнечной активности (на максимумах и минимумах), либо на временном отрезке, соответствующем ее уменьшению (нисходящие участки квазиодиннадцатилетнего цикла Швабе). Экономических кризисов в периоды возрастания солнечной активности практически не происходило. Следует сказать, что отмеченное здесь нами схожее действие максимумов и минимумов солнечной активности не является чем-то принципиально новым. Так, например, детальные дендрохронологические наблюдения зафиксировали не только значительное увеличение прироста деревьев в годы максимумов солнечной активности, но и его усиление, хотя и несколько меньшее, вблизи минимумов квазиодиннадцатилетних солнечных циклов. Такая особенность «связана с тем, что геоактивные области на Солнце, вызывающие магнитные бури и другие изменения в сфере Земли, возникают как в годы максимального образования пятен, так и в годы их минимумов».

Быстрый рост мировой экономики со второй половины XX века привел к отсутствию ярко выраженных минимумов величин ВНП на данном временном отрезке, что, однако, вовсе не означает отсутствия цикличности (за данный период времени циклы можно выделять по уменьшениям темпов прироста ВНП, например, по рассчитанным величинам ВНП(год)ВНП(год-1)) (рис. 2). Экстремальная характеристика величины солнечной активности не обязательно должна приводить к немедленному изменению показателя экономического роста, ее влияние может проявляться с определенной задержкой во времени, и с этим может быть связано наличие экономических кризисов на нисходящих участках циклов солнечной активности.

Наиболее четко влияние солнечной активности должно фиксироваться не для отдельных стран (здесь решающее влияние могут иметь другие факторы), а для всей совокупной экономической деятельности человечества. Работа по сопоставлению величин ВНП различных стран очень трудоемка и проводится в рамках международных проектов, выполняемых с интервалом 3-5 лет для ограниченного числа стран, что крайне затрудняет определение величины общемирового ВНП. Вместе с тем имеются достаточно надежные данные о динамике удельной величины ВНП самой мощной экономической державы второй половины XX века — США. Анализ приведенных данных полностью подтверждает наше предположение: после максимумов солнечной активности происходило либо замедление темпов роста американской экономики, либо ее падение.

Максимальное среднегодовое число Вольфа за XX век приходится на 1957 г. (рис. 1), в этом же году произошло падение величины удельного ВНП США. Отметим, что во второй половине XX века замедление темпов роста экономики в годы максимальной солнечной активности отмечено практически для всех ведущих экономических держав мира (рис. 3, 4). После максимума солнечной активности 2000 г. во всех этих странах, как мы теперь знаем, также произошло падение экономики или, по крайней мере, замедление темпов ее роста.

Следует отметить, что во второй половине XX века глобальный экономический цикл не носит синусоидального характера: за относительно кратковременным спадом экономики (около 2 лет) следует гораздо более длительный период ее роста (рис. 4, 5). Таким образом, исходя из имеющейся цикличности, можно предположить, что нынешний спад экономики США подходит к концу и в середине — конце 2002 г. должен начаться ее рост. После возобновления устойчивого экономического роста должно произойти увеличение спроса на мировых нефтяных рынках, что приведет к росту мирового энергопотребления (пунктирная линия на рис. 6), в результате чего следует ожидать роста мировых цен на нефть, что очень важно для российской экономики. Стабилизация цен на нефть в начале 2002 г., по нашему мнению, свидетельствует в пользу данного вывода. Крупные политические потрясения, безусловно, могут вызывать ценовые флуктуации, но это не может повлиять на долгосрочные тенденции нефтяного рынка.

Таким образом, видно, какое большое практическое значение может иметь изучение циклических процессов в глобальной системе «природа—общество—человек». Все они — проявление жизни Земли, неразрывно связанной с энергией Космоса. По нашему мнению, термин «энергокосмизм», введенный В.В. Бушуевым и И.К. Копыловым, подчеркивает космическое происхождение всей иерархии циклических процессов. Дальнейшее развитие естествознания, по нашему глубокому убеждению, приведет к тому, что космическое мировоззрение станет основным в идеологии, политике и экономике.

2. Прогноз для России

Учет цикличности современной мировой экономики имеет большое значение для разработки прогноза экономического развития нашей страны. Как показывает анализ данных о темпах изменения объемов ВВП России и ведущих стран мира (рис. 7), тенденции развития экономики России совпадают с общемировыми. В период с 1985 по 1989 г. (год максимальной солнечной активности) темпы прироста ВВП составляли около 2-5% в год, после чего произошло замедление темпов роста, а в 1991 г. он и вовсе стал отрицательным (рис. 7). Далее начался рост мировой экономики (до следующего пика солнечной активности в 2000 г.), а реформы в России с применением методов «шоковой терапии», наоборот, обрушили российскую экономику. Непринятие во внимание общемировых тенденций развития мировой экономики в начале 90-х гг. XX века привело к падению объемов ВВП России на 85% в год.


Заключение.

В заключении хотелось бы сказать следующее.

С позиций анализа мировых экономических тенденций труднообъяснимым выглядит российский дефолт 1998 г. Действительно, в мировой экономике продолжался устойчивый рост, а падение российской экономики, по-видимому, объясняется только ее внутренним экономическим курсом. Также следует отметить некоторое «запаздывание» проявления тенденций современной российской экономики относительно мировых (около 1 года), что особенно хорошо видно из сравнения динамики ВВП России и США на временном отрезке 1999-2001 гг.

Факт совпадения тенденций в развитии российской экономики с общемировыми тенденциями (и тенденциями развития американской экономики в частности) позволяет нам разработать прогноз экономического развития России на период до 2010 г. (следующий максимум солнечной активности). Наблюдаемое замедление темпов годового прироста ВВП России в 2001-2002 гг. (3-5%) по сравнению с 2000 г. (7-8%) является закономерной частью циклического экономического процесса и не должно вызывать паники. Разработанный нами прогноз, таким образом, учитывает цикличность мирового экономического процесса, которая должна быть принята во внимание при разработке экономической политики России.


Список литературы.

  1. Чернова Н.М., Былова А.М., Экология. Учебное пособие для педагогических институтов, М., Просвещение, 1999.
  2. Русская философия / Под ред. Ю. В. Крянева, Л. Е. Моториной М., 2001.
  3. Баландин О. К. Вернадский: жизнь, мысль, бессмертие. М., 1991.

Приложение.

Рис. 1.

Экономические показатели в некоторых странах мира на фоне солнечной активности

Рис. 2.

Рис. 3.

Изменение величины ВНП для некоторых стран

Рис. 4.

Прирост ВНП для некоторых стран и корреляция его с солнечной активностью.

Рис. 5.

Изменение величины ВНП США

Рис. 6.

Потребление нефти в США на фоне солнечной активности

Рис. 7.

Прогноз динамики ВВП России и США до 2010 г.

Другие похожие работы, которые могут вас заинтересовать.вшм>

17935. Международно-правовые ограничения военного использования космоса 24.67 KB
Генеральной Ассамблеей ООН Резолюции 1884 призывавшей все государства воздерживаться от выведения на орбиты вокруг Земли или размещения в космосе ядерных вооружений или любых других видов оружия массового уничтожения 2. Договор основываясь на принципах Устава ООН объявляет космос достоянием всего человечества и закрепляет важную норму о том что космическое пространство не подлежит национальному присвоению а государствам гарантируется свобода доступа ко всем его частям на равноправной основе. В частности государства члены...
19449. Понятия экосистемы и биосферы 28.85 KB
Все автотрофные организмы экосистемы способные синтезировать органические вещества из неорганических компонентов неживой природы называются продуценты. Вся масса органических веществ синтезируемых продуцентами в единицу времени при данной скорости фотосинтеза составляет валовую первичную продукцию ВПП экосистемы. Прирост массы всех продуцентов в единицу времени составляет чистую первичную продукцию экосистемы.
8873. Учение о биосфере. Ресурсы биосферы и пути их рационального использования 15.39 KB
Биосфера – наружная оболочка Земли область распространения жизни которая включает все живые организмы и все элементы неживой природы образующие среду обитания живых организмов. Биосферу Вернадский рассматривал как качественно отличную оболочку Земли развитие которой в значительной мере определяется деятельностью живых организмов. Вернадский рассматривает биосферу не как любую совокупность живых организмов а как единое пространство в котором сосредоточена жизнь и осуществляется постоянное взаимодействие всего живого с неорганическими...
619. Причины региональной деградации биосферы. Формирование техносферы-нового типа среды обитания 11.79 KB
Этим изменениям во многом способствовали: высокие темпы роста численности населения на Земле демографический взрыв и его урбанизация; рост потребления и концентрация энергетических ресурсов; интенсивное развитие промышленного и сельскохозяйственного производства; массовое использование транспорта; рост затрат на военные цели и ряд других процессов. Достижения в медицине повышение комфортности деятельности и быта интенсификация и рост продуктивности сельского хозяйства во многом способствовали увеличению...
1798. Связь планов производства и реализации продукции 24.04 KB
Понятие реализации продукции и каналы распределения продукции. Связь планов производства и реализации продукции. Актуальность темы заключается в том что объем производства и реализации продукции являются взаимозависимыми показателями. В условиях ограниченных производственных возможностей и неограниченном спросе на первое место выдвигается объем производства продукции.
12581. Собственность и управление: связь и тенденции развития 198.6 KB
Осветить теоретические аспекты связи собственности и управления; Определить форму собственности и организацию управления в ООО «Виктория-Ф»; Предложить пути решения проблемных ситуаций в ООО «Виктория-Ф».
2431. Двусторонняя (диалектическая) связь языка и общества 4.42 KB
Современная лингвистика признает зависимость языка от общества в процессе его возникновения а также определяет основную функцию языка – быть средством общения в обществе. Кроме языка к общественным явлениям относят экономический строй общества базис политические правовые философские эстетические религиозные взгляды общества и соответствующие им учреждения надстройка. Это связано с главной функцией языка – быть средством общения.
2168. СВЯЗЬ ОС UNIX С ДРУГИМИ КОМПЬЮТЕРНЫМИ СТАНЦИЯМИ 15.88 KB
Операционная система UNIX включает в себя ряд утилит, которое позволяет связываться с другими станциями, входящих в компьютерную сеть. Применяемые утилиты зависят от того, как локальный компьютер связан с другой станцией, какие задачи необходимо решать на другой станции, какая операционная система используется там.
3653. Связь организационной психологии с другими науками 12.92 KB
Организационная психология, как один из разделов психологии, пересекается с другими ее разделами, а также с другими дисциплинами, например, социологией, наукой об экономике производства, общей психологией, психологией труда, менеджментом и т.д.
851. Причинная связь как необходимое условие уголовной ответственности 31.15 KB
Понятие причинной связи и ее установление в уголовном праве Заключение Список использованных источников Введение Проблема причинной связи является одной из центральных проблем в теории российского уголовного права.
Поделиться