Найти частные производные 1 порядка. Частные производные и полный дифференциал. Систематизируем элементарные прикладные правила

Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х 1 , х 2 … х n из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f(х 1 , х 2 … х n) многих переменных.

Х – обл-ть опред-я ф-ции

х 1 , х 2 … х n – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х 2 1 *х 2 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х 1 , х 2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х 0 , зн. пл-ть Х || 0уz у = у 0 0хz Вид ф-ции: Z=f(х 0 ,y); Z=f(x,у 0)

Например: Z=x 2 +y 2 -2y

Z= x 2 +(y-1) 2 -1 x=0 Z=(y-1) 2 -1 y=1 Z= x 2 -1 Z=0 x 2 +(y-1) 2 -1

Парабола окруж-ть(центр(0;1)

Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х 0 ,y 0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х 0 |<б; |y-y 0 |<б выполняется нерав-во |f(x,y)-A|

Z=f(х;у) непрерывна в т.(х 0 ,y 0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х 0 и у к у 0 ; - этот предел = знач-ю

ф-ции в т.(х 0 ,y 0), т.е. limf(х;у)=f(х 0 ,y 0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Дифференциал ф-ции, его геом смысл. Применение диф-ла в приближенных значениях.

dy=f’(x)∆x – диф-л ф-ции

dy=dx, т.е. dy=f ’(x)dx если у=х

С геом точки зрения диф-л ф-ции – это приращение ординаты касательной, проведенной к графику ф-ции в точке с абсциссой х 0

Диф-л применяют в вычислении приближ. значений ф-ции по формуле: f(х 0 +∆x)~f(х 0)+f’(х 0)∆x

Чем ближе ∆x к х, тем результат точнее

Частные производные первого и второго порядка

Производная первого порядка(которая называется частной)

О. Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х 0, у 0. Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y)



Аналогично определяется частная производная от переменной у, т.е.

Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.

Отличие состоит в том, что при дифференциации функции по переменной х, у считается const, а при дифференцировании по у, х считается const.

Изолированные const соединены с функцией операциями сложения/вычитания.

Связанные const соединены с функцией операциями умножения/деления.

Производная изолированной const = 0

1.4.Полный дифференциал функции 2-х переменных и его приложения

Пусть z = f(x,y), тогда

tz = - называется полным приращением

Частная производная 2-го порядка

Для непрерывных функций 2-х переменных смешанные частные производные 2-го порядка и совпадают.

Применение частных производных к определению частных производных max и min функций называются экстремумами.

О. Точки называются max или min z = f(x,y), если существуют некоторые отрезки такие, что для всех x и y из этой окрестности f(x,y)

Т. Если задана точка экстремума функции 2-х переменных, то значение частных производных в этой точке равны 0, т.е. ,

Точки , в которых частные производные первого порядка называются стационарными или критическими.

Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.

Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,

1) , причем maxA<0, minA>0.

1.4.(*)Полный дифференциал. Геометрический смысл дифференциала. Приложение дифференциала в приближенных вычислениях

О. Пусть функция y = f(x) определена в некоторой окрестности в точки . Функция f(x) называется дифференцируемой в точке , если ее приращение в этой точке , где представлено в виде (1)

Где А – постоянная величина, не зависящая от , при фиксированной точке х, - бесконечно малая при . Линейная относительно функция А называется дифференциалом функции f(x) в точке и обозначается df() или dy.

Таким образом, выражение (1) можно записать в виде ().

Дифференциал функции в выражении (1) имеет вид dy = A . Как и всякая линейная функция, он определен для любого значений в то время, как приращение функции необходимо рассматривать только для таких , для которых + принадлежит области определения функции f(x).

Для удобства записи дифференциала приращение обозначают dx и называют его дифференциалом независимой переменной x. Поэтому дифференциал записывают в виде dy = Adx.

Если функция f(x) дифференцируема в каждой точке некоторого интервала, то ее дифференциал является функцией двух переменных – точки x и переменной dx:

Т. Для того, чтобы функция y = g(x) была дифференцируема в некоторой точке , необходимо и достаточно, чтобы она имела в этой точке производную, при этом

(*)Доказательство. Необходимость.

Пусть функция f(x) дифференцируема в точке , т.е. . Тогда

Поэтому производная f’() существует и равна А. Отсюда dy = f’()dx

Достаточность.

Пусть существует производная f’(), т.е. = f’(). Тогда кривую y = f(x) отрезком касательной. Для вычисления значения функции в точке х берут в некоторой ее окрестности точку , такую, что не составляет труда найти f() и f’()/

Частные производные функции двух переменных.
Понятие и примеры решений

На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции . Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.

Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы .

Быстренько повторим понятие функции двух переменных , я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: – функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

С геометрической точки зрения функция двух переменных чаще всего представляет собой поверхность трехмерного пространства (плоскость, цилиндр, шар, параболоид, гиперболоид и т. д.). Но, собственно, это уже больше аналитическая геометрия, а у нас на повестке дня математический анализ, который никогда не давал списывать мой вузовский преподаватель является моим «коньком».

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной .

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций . Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас:

…да, кстати, для этой темы я таки создал маленькую pdf-книжку , которая позволит «набить руку» буквально за пару часов. Но, пользуясь сайтом, вы, безусловно, тоже получите результат – только может чуть медленнее:

Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения :
или – частная производная по «икс»
или – частная производная по «игрек»

Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом) .

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования , . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3) Используем табличные производные и .

(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.

Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом) .

(1) Используем те же правила дифференцирования , . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа.

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для (да и вообще почти для любой буквы) . В частности, используемые нами формулы выглядят так: и .

В чём смысл частных производных?

По своей сути частные производные 1-го порядка напоминают «обычную» производную :

– это функции , которые характеризуют скорость изменения функции в направлении осей и соответственно. Так, например, функция характеризует крутизну «подъёмов» и «склонов» поверхности в направлении оси абсцисс, а функция сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

! Примечание : здесь подразумеваются направления, которые параллельны координатным осям .

В целях лучшего понимания рассмотрим конкретную точку плоскости и вычислим в ней значение функции («высоту»):
– а теперь представьте, что вы здесь находитесь (НА САМОЙ поверхности).

Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции в точке по направлению оси абсцисс. Иными словами, если мы сделаем маленький-маленький (бесконечно малый) шажок в сторону острия оси (параллельно данной оси) , то спустимся вниз по склону поверхности.

Теперь узнаем характер «местности» по направлению оси ординат:

Производная по «игрек» положительна, следовательно, в точке по направлению оси функция возрастает . Если совсем просто, то здесь нас поджидает подъём в гору.

Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.

Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности по возможности в каждой точке области определения данной функции по всем доступным путям. Об этом и других интересных вещах я расскажу на одном из следующих уроков, ну а пока что вернёмся к технической стороне вопроса.

Систематизируем элементарные прикладные правила:

1) Когда мы дифференцируем по , то переменная считается константой.

2) Когда же дифференцирование осуществляется по , то константой считается .

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения :
или – вторая производная по «икс»
или – вторая производная по «игрек»
или – смешанная производная «икс по игрек»
или – смешанная производная «игрек по икс»

Со второй производной нет никаких проблем. Говоря простым языком, вторая производная – это производная от первой производной .

Для удобства я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

В практических примерах можно ориентироваться на следующее равенство :

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».
Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для их проверки не существует.

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания экстремумов функции двух переменных . Но всему своё время:

Пример 2

Вычислить частные производные первого порядка функции в точке . Найти производные второго порядка.

Это пример для самостоятельного решения (ответы в конце урока). Если возникли трудности с дифференцированием корней, вернитесь к уроку Как найти производную? А вообще, довольно скоро вы научитесь находить подобные производные «с лёту».

Набиваем руку на более сложных примерах:

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

И по неоднократным просьбам читателей, полный дифференциал второго порядка .

Он выглядит так:

ВНИМАТЕЛЬНО найдём «однобуквенные» производные 2-го порядка:

и запишем «монстра», аккуратно «прикрепив» квадраты , произведение и не забыв удвоить смешанную производную:

Ничего страшного, если что-то показалось трудным, к производным всегда можно вернуться позже, после того, как поднимите технику дифференцирования:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Рассмотрим серию примеров со сложными функциями:

Пример 5

Найти частные производные первого порядка функции .

Решение:

Пример 6

Найти частные производные первого порядка функции .
Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Знаете, всегда приятно, когда дробь удается превратить в ноль). Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс» , а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки:

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

Кто понял анекдот, тот освоил производные, минимум, на «тройку»).

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.

Каждая частная производная (по x и по y ) функции двух переменных представляет собой обыкновенную производную функции одной переменной при фиксированном значении другой переменной:

(где y = const),

(где x = const).

Поэтому частные производные вычисляют по формулам и правилам вычисления производных функций одной переменной , считая при этом другую переменную постоянной (константой).

Если Вам не нужен разбор примеров и необходимого для этого минимума теории, а нужно лишь решение Вашей задачи, то переходите к калькулятору частных производных онлайн .

Если тяжело сосредоточиться, чтобы отслеживать, где в функции константа, то можно в черновом решении примера вместо переменной с фиксированным значением подставить любое число - тогда можно будет быстрее вычислить частную производную как обыкновенную производную функции одной переменной. Надо только не забыть при чистовом оформлении вернуть на место константу (переменную с фиксированном значением).

Описанное выше свойство частных производных следует из определения частной производной, которое может попасться в экзаменационных вопросах. Поэтому для ознакомления с определением ниже можно открыть теоретическую справку.

Понятие непрерывности функции z = f (x , y ) в точке определяется аналогично этому понятию для функции одной переменной.

Функция z = f (x , y ) называется непрерывной в точке если

Разность (2) называется полным приращением функции z (оно получается в результате приращений обоих аргументов).

Пусть заданы функция z = f (x , y ) и точка

Если изменение функции z происходит при изменении только одного из аргументов, например, x , при фиксированном значении другого аргумента y , то функция получит приращение

называемое частным приращением функции f (x , y ) по x .

Рассматривая изменение функции z в зависимости от изменения только одного из аргументов, мы фактически переходим к функции одной переменной.

Если существует конечный предел

то он называется частной производной функции f (x , y ) по аргументу x и обозначается одним из символов

(4)

Аналогично определяются частное приращение z по y :

и частная производная f (x , y ) по y :

(6)

Пример 1.

Решение. Находим частную производную по переменной "икс":

(y фиксировано);

Находим частную производную по переменной "игрек":

(x фиксировано).

Как видно, не имеет значения, в какой степени переменная, которая фиксирована: в данном случае это просто некоторое число, являющееся множителем (как в случае обычной производной) при переменной, по которой находим частную производную. Если же фиксированная переменная не умножена на переменную, по которой находим частную производную, то эта одинокая константа, безразлично, в какой степени, как и в случае обычной производной, обращается в нуль.

Пример 2. Дана функция

Найти частные производные

(по иксу) и (по игреку) и вычислить их значения в точке А (1; 2).

Решение. При фиксированном y производная первого слагаемого находится как производная степенной функции (таблица производных функций одной переменной ):

.

При фиксированном x производная первого слагаемого находится как производная показательной функции, а второго – как производная постоянной:

Теперь вычислим значения этих частных производных в точке А (1; 2):

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Пример 3. Найти частные производные функции

Решение. В один шаг находим

(y x , как если бы аргументом синуса было 5x : точно так же 5 оказывается перед знаком функции);

(x фиксировано и является в данном случае множителем при y ).

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Аналогично определяются частные производные функции трёх и более переменных.

Если каждому набору значений (x ; y ; ...; t ) независимых переменных из множества D соответствует одно определённое значение u из множества E , то u называют функцией переменных x , y , ..., t и обозначают u = f (x , y , ..., t ).

Для функций трёх и более переменных геометрической интерпретации не существует.

Частные производные функции нескольких переменных определяются и вычисляются также в предположении, что меняется только одна из независимых переменных, а другие при этом фиксированы.

Пример 4. Найти частные производные функции

.

Решение. y и z фиксированы:

x и z фиксированы:

x и y фиксированы:

Найти частные производные самостоятельно, а затем посмотреть решения

Пример 5.

Пример 6. Найти частные производные функции .

Частная производная функции нескольких переменных имеет тот же механический смысл, что и производная функции одной переменной , - это скорость изменения функции относительно изменения одного из аргументов.

Пример 8. Количественная величина потока П пассажиров железных дорог может быть выражена функцией

где П – количество пассажиров, N – число жителей корреспондирующих пунктов, R – расстоянии между пунктами.

Частная производная функции П по R , равная

показывает, что уменьшение потока пассажиров обратно пропорционально квадрату расстояния между корреспондирующими пунктами при одной и той же численности жителей в пунктах.

Частная производная П по N , равная

показывает, что увеличение потока пассажиров пропорционально удвоенному числу жителей населённых пунктов при одном и том же расстоянии между пунктами.

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Полный дифференциал

Произведение частной производной на приращение соответствующей независимой переменной называется частным дифференциалом. Частные дифференциалы обозначаются так:

Сумма частных дифференциалов по всем независимым переменным даёт полный дифференциал. Для функции двух независимых переменных полный дифференциал выражается равенством

(7)

Пример 9. Найти полный дифференциал функции

Решение. Результат использования формулы (7):

Функция, имеющая полный дифференциал в каждой точке некоторой области, называется дифференцируемой в этой области.

Найти полный дифференциал самостоятельно, а затем посмотреть решение

Так же как и в случае функции одной переменной, из дифференцируемости функции в некоторой области следует её непрерывность в этой области, но не наоборот.

Сформулируем без доказательств достаточное условие дифференцируемости функции.

Теорема. Если функция z = f (x , y ) имеет непрерывные частные производные

в данной области, то она дифференцируема в этой области и её дифференциал выражается формулой (7).

Можно показать, что подобно тому, как в случае функции одной переменной дифференциал функции является главной линейной частью приращения функции , так и в случае функции нескольких переменных полный дифференциал является главной, линейной относительно приращений независимых переменных частью полного приращения функции.

Для функции двух переменных полное приращение функции имеет вид

(8)

где α и β – бесконечно малые при и .

Частные производные высших порядков

Частные производные и функции f (x , y ) сами являются некоторыми функциями тех же переменных и, в свою очередь, могут иметь производные по разным переменным, которые называются частными производными высших порядков.

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z"_x, z"_y $ и находятся по формулам:

Частные производные первого порядка

$$ z"_x = \frac{\partial z}{\partial x} $$

$$ z"_y = \frac{\partial z}{\partial y} $$

Частные производные второго порядка

$$ z""_{xx} = \frac{\partial^2 z}{\partial x \partial x} $$

$$ z""_{yy} = \frac{\partial^2 z}{\partial y \partial y} $$

Смешанная производная

$$ z""_{xy} = \frac{\partial^2 z}{\partial x \partial y} $$

$$ z""_{yx} = \frac{\partial^2 z}{\partial y \partial x} $$

Частная производная сложной функции

а) Пусть $ z (t) = f(x(t), y(t)) $, тогда производная сложной функции определяется по формуле:

$$ \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} $$

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

$$ \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} $$

$$ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} $$

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ \frac{dy}{dx} = -\frac{f"_x}{f"_y} $$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z"_x = - \frac{F"_x}{F"_z}; z"_y = - \frac{F"_y}{F"_z} $$

Примеры решений

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 - y^2 + 4xy + 10 $
Решение

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z"_x = (x^2-y^2+4xy+10)"_x = 2x - 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z"_y = (x^2-y^2+4xy+10)"_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ z"_x = 2x+4y; z"_y = -2y+4x $$
Пример 2
Найти частные производные функции второго порядка $ z = e^{xy} $
Решение

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

$$ z"_x = (e^{xy})"_x = e^{xy} \cdot (xy)"_x = ye^{xy} $$

Положим теперь $ x $ постоянной величиной:

$$ z"_y = (e^{xy})"_y = e^{xy} \cdot (xy)"_y = xe^{xy} $$

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

$$ z""_{xx} = (z"_x)"_x = (ye^{xy})"_x = (y)"_x e^{xy} + y(e^{xy})"_x = 0 + ye^{xy}\cdot (xy)"_x = y^2e^{xy} $$

Задаем $ x $ постоянной:

$$ z""_{yy} = (z"_y)"_y = (xe^{xy})"_y = (x)"_y e^{xy} + x(e^{xy})"_y = 0 + x^2e^{xy} = x^2e^{xy} $$

Теперь осталось найти смешанную производную. Можно продифференцировать $ z"_x $ по $ y $, а можно $ z"_y $ по $ x $, так как по теореме $ z""_{xy} = z""_{yx} $

$$ z""_{xy} = (z"_x)"_y = (ye^{xy})"_y = (y)"_y e^{xy} + y (e^{xy})"_y = ye^{xy}\cdot (xy)"_y = yxe^{xy} $$

Ответ
$$ z"_x = ye^{xy}; z"_y = xe^{xy}; z""_{xy} = yxe^{xy} $$
Пример 4
Пусть $ 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение

Записываем функцию в формате: $ F(x,y,z) = 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z"_x (y,z - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_x = 3 x^2 z - 4 $$

$$ z"_y (x,y - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_y = 3z^2 $$

Ответ
$$ z"_x = 3x^2 z - 4; z"_y = 3z^2; $$

Подведем итог, чем же отличается нахождение частных производных от нахождения «обычных» производных функции одной переменной:

1) Когда мы находим частную производную , то переменнаясчитается константой.

2) Когда мы находим частную производную , то переменнаясчитается константой.

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения:

Или – вторая производная по «икс»

Или – вторая производная по «игрек»

Или – смешанная производная «по икс игрек»

Или – смешанная производная «по игрек икс»

В понятии второй производной нет ничего сложного. Говоря простым языком, вторая производная – это производная от первой производной.

Для наглядности я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

Для практических примеров, когда все частные производные непрерывны, справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».

Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для проверки не существует.

Пример 2

Найти частные производные первого и второго порядка функции

Это пример для самостоятельного решения (ответ в конце урока).

При определенном опыте частные производные из примеров №№1,2 будут решаться Вами устно.

Переходим к более сложным примерам.

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Рассмотрим серию примеров, включающих в себя сложные функции.

Пример 5

Найти частные производные первого порядка функции .

(1) Применяем правило дифференцирования сложной функции . С урока Производная сложной функции следует помнить очень важный момент: когда мы по таблице превращаем синус (внешнюю функцию) в косинус, то вложение (внутренняя функция) у нас не меняется .

(2) Здесь используем свойство корней: , выносим константу за знак производной, а корень представляем в нужном для дифференцирования виде.

Аналогично:

Запишем полный дифференциал первого порядка:

Пример 6

Найти частные производные первого порядка функции .

Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы.

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки».

(Знаете, всегда приятно, когда дробь удается превратить в ноль).

Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в алгоритме ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь мы имеем произведение двух функций, КАЖДАЯ из которых зависит от «икс» , поэтому нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

Поделиться