Мерой вращательного движения системы является. Основное уравнение динамики вращательного движения. Момент импульса и момент инерции

Момент силыF , действующей на тело, относительно оси вращения

,

где
- проекция силы F на плоскость, перпендикулярную оси вращения; l - плечо силы F (кратчайшее расстояние от оси вращения до линии действия силы).

Момент инерции относительно оси вращения:

а) материальной точки

J = mr 2 ,

где т - масса точки; r - расстояние ее от оси вращения;

б) дискретного твердого тела

где
- масса i-го элемента тела; r i - расстояние этого элемента от оси вращения; п - число элементов тела;

в) сплошного твердого тела

Если тело однородно, т. е. его плотность одинакова по всему объему, то

dm = dV и

где V - объем тела.

Моменты инерции некоторых тел правильной геометрической формы:

Ось, относительно которой определяется момент инерции

Формула момента инерции

Однородный тонкий стержень массой т и длиной l

Тонкое кольцо, обруч, труба радиусом R и массой т, маховик радиусом R и массой т, распределенной по ободу

Круглый однородный диск (цилиндр) радиусом R и массой т Однородный шар массой т и радиусом R

Проходит через центр тяжести стержня перпендикулярно стержню

Проходит через конец стержня перпендикулярно стержню

Проходит через центр перпендикулярно плоскости основания

Проходит через центр диска перпендикулярно плоскости основания

Проходит через центр шара

1/12ml 2

Теорема Штейнера. Момент инерции тела относительно произвольной оси

J = J 0 + ma 2 ,

где J 0 - момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно заданной оси; а - расстояние между осями; m - масса тела.

Момент импульса вращающегося тела относительно оси

L = J
.

Закон сохранения момента импульса

где L i - момент импульса i-го тела, входящего в состав системы. Закон сохранения момента импульса для двух взаимодействующих тел

где
- моменты инерции и угловые скорости тел до взаимодействия:
- те же величины после взаимодействия.

Закон сохранения момента импульса для одного тела, момент инерции которого меняется,

где
- начальный и конечный моменты инерции;
- начальная и конечная угловые скорости тела.

Основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси

M dt =d(J), где М - момент силы, действующей на тело в течение времени dt ;

J - момент инерции тела;
- угловая скорость; J - момент импульса.

Если момент силы и момент инерции постоянны, то это уравнение записывается в виде

М t =J
.

В случае постоянного момента инерции основное уравнение динамики вращательного движения принимает вид

M =J , где - угловое ускорение.

Работа постоянного момента силы М, действующего на вращающееся тело,

где  - угол поворота тела.

Мгновенная мощность, развиваемая при вращении тела,

N = M
.

Кинетическая энергия вращающегося тела

T =1/2 J .

Кинетическая энергия тела, катящегося по плоскости без скольжения,

T== 1 / 2 mv 2 + l / 2 J ,

где l / 2 mv 2 - кинетическая энергия поступательного движения тела; v - скорость центра инерции тела; l / 2 J ,- кинетическая энергия вращательного движения тела вокруг оси, проходящей через центр инерции.

Работа, совершаемая при вращении тела, и изменение кинетической энергии его связаны соотношением

Пусть некоторое тело под действием силы F, приложенной в точке А, приходит во вращение вокруг оси ОО" (рис. 1.14).

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р, опущенный из точки О (лежащей на оси) на направление силы, называют плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О:

М = Fp=Frsinα.

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы:

(3.1) Единица момента силы - ньютон-метр (Н м).

Направление М можно найти с помощью правила правого винта.

Моментом импульса частицы называется векторное произведение радиус-вектора частицы на её импульс:

или в скалярном виде L = гPsinα

Эта величины векторная и совпадает по направлению с векторами ω.

§ 3.2 Момент инерции. Теорема Штейнера

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Моментом инерции материальной точки относительно оси враще­ния называют произведение массы этой точки на квадрат расстояния её от оси:

I i =m i r i 2 (3.2)

Момент инерции тела относительно оси вращения называют сумму мо­ментов инерции материальных точек, из которых состоит это тело:

(3.3)

В общем случае, если тело сплошное и представляет собой совокупность точек с малыми массами dm, момент инерции определяется интегрированием:

(3.4)

Если тело однородно и его плотность
, то момент инерции тела

(3.5)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих правильную геометрическую форму и равномерное распределение массы по объему.

    Момент инерции однородного стержня относительно оси, проходящей через центр инерции и перпендикулярной стержню

(3.6)

    Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(3.7)

    Момент инерции тонкостенного цилиндра или обруча относительно оси, перпендикулярной плоскости его основания и проходящей через его центр,

(3.8)

    Момент инерции шара относительно диаметра

(3.9)

Рассмотрим пример. Определим момент инерции диска относительно оси, проходящей через центр инерции и перпендикулярной плоско­сти вращения. Масса диска - m, радиус - R.

Площадь кольца (рис. 3.2), заключенного между

r и r + dr, равна dS = 2πr·dr . Площадь диска S = πR 2 .

Следовательно,
. Тогда

или

Согласно

Приведенные формулы для моментов инерции тел даны при условии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует воспользоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

(3.11)

Единица момента инерции - килограмм-метр в квадрате (кг· м 2).

Так, момент инерции однородного стержня относительно оси, проходящей через его конец, по теореме Штейнера равен

(3.12)

Сила трения всегда направлена вдоль поверхности соприкосновения в сторону, противоположную движению. Она всегда меньше силы нормального давления.

Здесь:
F - гравитационная сила, с которой два тела притягиваются друг к другу (Ньютон),
m 1 - масса первого тела (кг),
m 2 - масса второго тела (кг),
r - расстояние между центрами масс тел (метр),
γ - гравитационная постоянная 6.67 · 10 -11 (м 3 /(кг · сек 2)),

Напряжённость гравитацио́нного по́ля - векторная величина, характеризующая гравитационное поле в данной точке и численно равная отношению силы тяготения, действующей на тело, помещённое в данную точку поля, к гравитационной массе этого тела:

12. Изучая механику твердого тела, мы использовали понятие абсолютно твердого тела. Но в природе не существует абсолютно твердых тел, т.к. все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются .
Деформация называется упругой , если после того, как на тело перестали действовать внешние силы тело восстанавливает первоначальные размеры и форму. Деформации, сохраняющиеся в теле после прекращения действия внешних сил, называютсяпластическими (или остаточными )

РАБОТА И МОЩНОСТЬ

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где - перемещение тела, - сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где - момент силы, - угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.
Мощность - это работа за единицу времени (1 с): . Мощность измеряется в Ваттах [Вт].

14.Кинети́ческая эне́ргия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательногодвижения.

Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:

Есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что , Получим:

Если система замкнута, то есть , то , а величина

остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

Масса тела

Скорость центра масс тела

Момент инерции тела

Угловая скорость тела.

15.Потенциальная энергия - скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.

16. Растяжение или сжатие пружины приводит к запасанию ее потенциальной энергии упругой деформации. Возвращение пружины к положению равновесия приводит к высвобождению запасенной энергии упругой деформации. Величина этой энергии равна:

Потенциальная энергия упругой деформации..

- работа силы упругости и изменение потенциальной энергии упругой деформации.

17.консервати́вные си́лы (потенциальные силы) - силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил) . Отсюда следует определение: консервативные силы - такие силы, работа которых по любой замкнутой траектории равна 0

Диссипати́вные си́лы - силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту.

18. Вращением вокруг неподвижной оси называется такое движение твердого тела, при котором во все время движения две его точки остаются неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, по окружностям, центры которых лежат на оси вращения.

Момент инерции - скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина J a , равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

§ m i - масса i -й точки,

§ r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

§ - масса малого элемента объёма тела ,

        Основные понятия.

Момент силы относительно оси вращения – это векторное призведение радиус-вектора на силу.

(1.14)

Момент силы – это вектор, направление которого определяется по правилу буравчика (правого винта) в зависимости от направления силы, действующей на тело. Момент силы направлен вдоль оси вращения и не имеет конкретной точки приложения.

Численное значение данного вектора определяется по формуле:

M=r F sin (1.15),

где  - угол между радиус-вектором и направлением действия силы.

Если =0 или , момент силы М=0 , т.е. сила, проходящяя через ось вращения или совпадающяя с ней, вращения не вызывает.

Наибольший по модулю вращающий момент создается, если сила действует под углом = /2 (М 0) или =3 /2 (М 0).

Используя понятие плеча силы (плечо силы d – это перпендикуляр, опущенный из центра вращения на линию действия силы), формула момента силы принимает вид:

, где
(1.16)

Правило моментов сил (условие равновесия тела, имеющего неподвижную ось вращения):

Для того, чтобы тело, имеющее неподвижную ось вращения, находилось в равновесии, необходимо, чтобы алгебраическая сумма моментов сил, действующих на данное тело, равнялась нулю.

М i =0 (1.17)

Единицей измерения момента силы в системе СИ является [Нм]

При вращательном движении инертность тела зависит не только от его массы, но и от распределения ее в пространстве относительно оси вращения.

Инертность при вращении характеризуется моментом инерциитела относительно оси вращения J.

Момент инерции материальной точки относительно оси вращения – это величина, равная произведению массы точки на квадрат ее расстояния от оси вращения:

J =m r 2 (1.18)

Моментом инерции тела относительно оси называется сумма моментов инерции материальных точек, из которых состоит тело:

J= m r 2 (1.19)

Момент инерции тела зависит от его массы и формы, а также от выбора оси вращения. Для определения момента инерции тела относительно некоторой оси используется теорема Штейнера-Гюйгенса:

J=J 0 +m d 2 (1.20),

где J 0 момент инерции относительно параллельной оси, проходящей через цент масс тела, d расстояние между двумя параллельными осями. Момент инерции в СИ измеряется в [кгм 2 ]

Момент инерции при вращательном движении туловища человека определяют опытным путем и рассчитывают приблизительно по формулам для цилиндра, круглого стержня или шара.

Момент инерции человека относительно вертикальной оси вращения, которая проходит через центр масс (центр масс тела человека находится в сагиттальной плоскости немного впереди второго крестцового позвонка), в зависимости от положения человека, имеет следующие значения: при стойке “смирно” – 1,2 кгм 2 ; при позе «арабеск» – 8 кгм 2 ; в горизонтальном положении – 17 кгм 2 .

Работа во вращательном движении совершается при вращении тела под действием внешних сил.

Элементарная работа силы во вращательном движении равна произведению момента силы на элементарный угол поворота тела:

dA =M d (1.21)

Если на тело действует несколько сил, то элементарная работа равнодействующей всех приложенных сил определяется по формуле:

dA=M d (1.22),

где М – суммарный момент всех внешних сил, действующих на тело.

Кинетическая энергия вращающегося тела W к зависит от момента инерции тела и угловой скорости его вращения:

(1.23)

Момент импульса (момент количества движения) величина, численно равная произведению импульса тела на радиус вращения.

L=p r=m V r (1.24).

После соответствующих преобразований можно записать формулу для определения момента импульса в виде:

(1.25).

Момент импульса – вектор, направление которого определяется по правилу правого винта. Единицей измерения момента импульса в СИ являетсякгм 2 /с

        Основные законы динамики вращательного движения.

Основное уравнение динамики вращательного движения:

Угловое ускорение тела, совершающего вращательное движение, прямо пропорционально суммарному моменту всех внешних сил и обратно пропорционально моменту инерции тела.

(1.26).

Данное уравнение играет ту же роль при описании вращательного движения, что и второй закон Ньютона для поступательного движения. Из уравнения видно, что при действии внешних сил угловое ускорение тем больше, чем меньше момент инерции тела.

Второй закон Ньютона для динамики вращательного движения можно записать в ином виде:

(1.27),

т.е. первая производная от момента импульса тела по времени равна суммарному моменту всех внешних сил, действующих на данное тело.

Закон сохранения момента импульса тела:

Если суммарный момент всех внешних сил, действующих на тело, равен нулю, т.е.

M =0 , тогда dL/dt=0 (1.28).

Из этого следует
или
(1.29).

Это утверждение составляет сущность закона сохранения момента импульса тела, который формулируется следующим образом:

Момент импульса тела остается постоянным, если суммарный момент внешних сил, действующих на вращающееся тело, равен нулю.

Этот закон является справедливым не только для абсолютно твердого тела. Примером является фигурист, который выполняет вращение вокруг вертикальной оси. Прижимая руки, фигурист уменьшает момент инерции и увеличивает угловую скорость. Чтобы затормозить вращения, он, наоборот, широко разводит руки; в результате момент инерции увеличивается, и угловая скорость вращения уменьшается.

В заключение приведем сравнительную таблицу основных величин и законов, характеризующих динамику поступательного и вращательного движений.

Таблица 1.4.

Поступательное движение

Вращательное движение

Физическая величина

Формула

Физическая величина

Формула

Момент инерции

J=m r 2

Момент силы

M=F r, если

Импульс тела (количество движения)

p=m V

Момент импульса тела

L=m V r; L=J 

Кинетическая энергия

Кинетическая энергия

Механическая работа

Механическая работа

dA=Md

Основное уравнение динамики поступательного движения

Основное уравнение динамики вращательного движения

,

Закон сохранения импульса тела

или

если

Закон сохранения момента импульса тела

или J =const,

если

Поделиться