Личный генетический код. Днк и гены. Кодовая система ДНК

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова"

Кафедра "Естествознания и системного анализа"

Реферат по теме "Генетический код"

1. Понятие генетического кода

3. Генетическая информация

Список литературы


1. Понятие генетического кода

Генетический код - свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав: - А (A) аденин; - Г (G) гуанин; - Ц (C) цитозин; - Т (T) тимин (в ДНК) или У (U) урацил (в мРНК).

Реализация генетического кода в клетке происходит в два этапа: транскрипцию и трансляцию.

Первый из них протекает в ядре; он заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность РНК. Второй этап протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов.

2. Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.


Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом: 2 аминокислоты по 1 триплету = 2 9 аминокислот по 2 триплета = 18 1 аминокислота 3 триплета = 3 5 аминокислот по 4 триплета = 20 3 аминокислоты по 6 триплетов = 18 Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Ген- это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tРНК, rРНК или sРНК.

Гены tРНК, rРНК, sРНК белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.

Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактость.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген. Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код триплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

3. Генетическая информация

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Предполагается, что становление генетической информации шло по схеме: геохимические процессы - минералообразование - эволюционный катализ ( автокатализ).

Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: - по каналу прямой связи: ДНК - РНК - белок; и - по каналу обратной связи: среда - белок - ДНК.

Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно. Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам. Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.

В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И. Карагодин считает: "Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды". Связь информации с жизнью отмечает и А.А. Ляпунов: "Жизнь - это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул". Известный наш астрофизик Н.С. Кардашев также подчеркивает информационную составляющую жизни: "Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации". На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге "Физика бессмертия" эколог С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.

Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. А с другой - к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.


4. Расшифровка генетического кода человека

В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.

Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%. Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков. Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.

Нуклеотиды ДНК и РНК
  1. Пуриновые: аденин, гуанин
  2. Пиримидиновые: цитозин, тимин (урацил)

Кодон - триплет нуклеотидов, кодирующих определенную аминокислоту.

таб. 1. Аминокислоты, которые обычно встречаются в белках
Название Сокращенное обозначение
1. Аланин Ala
2. Аргинин Arg
3. Аспарагин Asn
4. Аспарагиновая кислота Asp
5. Цистеин Cys
6. Глутаминовая кислота Glu
7. Глутамин Gln
8. Глицин Gly
9. Гистидин His
10. Изолейцин Ile
11. Лейцин Leu
12. Лизин Lys
13. Метионин Met
14. Фенилаланин Phe
15. Пролин Pro
16. Серии Ser
17. Треонин Thr
18. Триптофан Trp
19. Тирозин Tyr
20. Валин Val

Генетический код, который еще называют аминокислотным кодом, - это система записи информации о последовательности расположения аминокислот в белке с помощью последовательности расположения нуклеотидных остатков в ДНК, которые содержат одно из 4-х азотистых оснований: аденин (А), гуанин (G), цитозин (C) и тимин (Т). Однако, поскольку двунитчатая спираль ДНК не принимает непосредственного участия в синтезе белка, который кодируется одной из этих нитей (т.е. РНК), то код записывается на языке РНК, в котором вместо тимина входит урацил (U). По этой же причине принято говорить, что код - это последовательность нуклеотидов, а не пар нуклеотидов.

Генетический код представлен определенными кодовыми словами, - кодонами.

Первое кодовое слово было расшифровано Ниренбергом и Маттеи в 1961 г. Они получили из кишечной палочки экстракт, содержащий рибосомы и прочие факторы, необходимые для синтеза белка. Получилась бесклеточная система для синтеза белка, которая могла бы осуществлять сборку белка из аминокислот, если в среду добавить необходимую мРНК. Добавив в среду синтетическую РНК, состоящую только из урацилов, они обнаружили, что образовался белок, состоящий только из фенилаланина (полифенилаланин). Так было установлено, что триплет нуклеотидов УУУ (кодон) соответствует фенилаланину. В течение последующих 5-6 лет были определены все кодоны генетического кода.

Генетический код - своеобразный словарь, переводящий текст, записанный с помощью четырех нуклеотидов, в белковый текст, записанный с помощью 20 аминокислот. Остальные аминокислоты, встречающиеся в белке, являются модификациями одной из 20 аминокислот.

Свойства генетического кода

Генетический код имеет следующие свойства.

  1. Триплетность - каждой аминокислоте соответствует тройка нуклеотидов. Легко подсчитать, что существуют 4 3 = 64 кодона. Из них 61 является смысловым и 3 - бессмысленными (терминирующими, stop-кодонами).
  2. Непрерывность (нет разделительных знаков между нуклеотидами) - отсутствие внутригенных знаков препинания;

    Внутри гена каждый нуклеотид входит в состав значащего кодона. В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его непрерывность (компактость) [показать]

    Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида.

    Одиночная мутация ("+" или "-") в начале гена или двойная мутация ("+" или "-") - портит весь ген.

    Тройная мутация ("+" или "-") в начале гена портит лишь часть гена.

    Четверная "+" или "-" мутация опять портит весь ген.

    Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, что

    1. код триплетен и внутри гена нет знаков препинания
    2. между генами есть знаки препинания
  3. Наличие межгенных знаков препинания - наличие среди триплетов инициирующих кодонов (с них начинается биосинтез белка), кодонов - терминаторов (обозначают конец биосинтеза белка);

    Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

    В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

  4. Колинеарность - соответствие линейной последовательности кодонов мРНК и аминокислот в белке.
  5. Специфичность - каждой аминокислоте соответствуют только определенные кодоны, которые не могут использоваться для другой аминокислоты.
  6. Однонаправленность - кодоны считываются в одном направлении - от первого нуклеотида к последующим
  7. Вырожденность, или избыточность ,- одну аминокислоту может кодировать несколько триплетов (аминокислот – 20, возможных триплетов – 64, 61 из них смысловой, т. е. в среднем каждой аминокислоте соответствует около 3 кодонов); исключение составляет метионин (Met) и триптофан (Trp).

    Причина вырожденности кода состоит в том, что главную смысловую нагрузку несут два первых нуклеотида в триплете, а третий не так важен. Отсюда правило вырожденности кода : если два кодона имеют два одинаковых первых нуклеотида, а их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.

    Однако из этого идеального правила есть два исключения. Это кодон АUА, который должен соответствовать не изолейцину, а метионину и кодон UGА, который является терминирующим, тогда как должен соответствовать триптофану. Вырожденность кода имеет, очевидно, приспособительное значение.

  8. Универсальность - все перечисленные выше свойства генетического кода характерны для всех живых организмов.
    Кодон Универсальный код Митохондриальные коды
    Позвоночные Беспозвоночные Дрожжи Растения
    UGA STOP Trp Trp Trp STOP
    AUA Ile Met Met Met Ile
    CUA Leu Leu Leu Thr Leu
    AGA Arg STOP Ser Arg Arg
    AGG Arg STOP Ser Arg Arg

    В последнее время принцип универсальности кода был поколеблен в связи c открытием Береллом в 1979 г. идеального кода митохондрий человека, в котором выполняется правило вырожденности кода. В коде митохондрий кодон UGA соответствует триптофану, а AUA - метионину, как того требует правило вырожденности кода.

    Возможно, в начале эволюции у всех простейших организмов был такой же код, как и у митохондрий, а затем он претерпел небольшие отклонения.

  9. Неперекрываемость - каждый из триплетов генетического текста независим друг от друга, один нуклеотид входит в состав только одного триплета; На рис. показана разница между перекрывающимся и неперекрывающимся кодом.

    В 1976г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

    Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D. Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D. Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

  10. Помехоустойчивость - отношение числа консервативных замен к числу радикальных замен.

    Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

    Так как одна и та же аминокислота может кодироваться разными триплетами, то некоторые замены в триплетах не приводят к замене кодируемой аминокислоты (например UUU -> UUC оставляет фенилаланин). Некоторые замены меняют аминокислоту на другую из того же класса (неполярный, полярный, основной, кислотный), остальные замены меняют и класс аминокислоты.

    В каждом триплете можно провести 9 однократных замен, т.е. выбрать, какую из позиций меняем - можно тремя способами (1-я или 2-я или 3-я), причем выбранную букву (нуклеотид) можно поменять на 4-1=3 других буквы (нуклеотида). Общее количество возможных замен нуклеотидов - 61 по 9 = 549.

    Прямым подсчетом по таблице генетического кода можно убедиться, что из них: 23 замены нуклеотидов приводят к появлению кодонов - терминаторов трансляции. 134 замены не меняют кодируемую аминокислоту. 230 замен не меняют класс кодируемой аминокислоты. 162 замены приводят к смене класса аминокислоты, т.е. являются радикальными. Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляции, а 176 - консервативны. Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны. Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 - консервативны, 102 - радикальны.


— это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.

Реализация генетической информации в живых клетках (то есть синтез белка, закодированного в ДНК) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции (синтез полипептидной цепи на матрице иРНК).

В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). Эти «буквы» составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменен урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности «букв».

В нуклеотидной последовательности ДНК имеются кодовые «слова» для каждой аминокислоты будущей молекулы белка — генетический код. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.

Три стоящих подряд нуклеотида кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определенных свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.

Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК — копия одной из нитей ДНК, то чаще всего генетический код записывают на "языке РНК".

Аминокислота Кодирующие триплеты РНК
Аланин ГЦУ ГЦЦ ГЦА ГЦГ
Аргинин ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ
Аспарагин ААУ ААЦ
Аспарагиновая кислота ГАУ ГАЦ
Валин ГУУ ГУЦ ГУА ГУГ
Гистидин ЦАУ ЦАЦ
Глицин ГГУ ГГЦ ГГА ГГГ
Глутамин ЦАА ЦАГ
Глутаминовая кислота ГАА ГАГ
Изолейцин АУУ АУЦ АУА
Лейцин ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ
Лизин ААА ААГ
Метионин АУГ
Пролин ЦЦУ ЦЦЦ ЦЦА ЦЦГ
Серин УЦУ УЦЦ УЦА УЦГ АГУ АГЦ
Тирозин УАУ УАЦ
Треонин АЦУ АЦЦ АЦА АЦГ
Триптофан УГГ
Фенилаланин УУУ УУЦ
Цистеин УГУ УГЦ
СТОП УГА УАГ УАА

Свойства генетического кода

Три стоящих подряд нуклеотида (азотистых оснований) кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.

  • Однозначность (дискретность)

Один триплет не может кодировать две разные аминокислоты, шифрует только одну аминокислоту. Определенный кодон соответствует только одной аминокислоте.

Каждая аминокислота может определяться более, чем одним триплетом. Исключение — метионин и триптофан . Другими словами — одной и той же аминокислоте может соответствовать несколько кодонов.

  • Неперекрываемость

Одно и то же основание не может одновременно входить в два соседних кодона.

Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, поэтому мы можем говорить о полярности генетического кода.

У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, то есть генетический код одинаков для всех живых существ. Други ми словами, у ниверсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Универсальность кода ДНК подтверждает единство п роисхождения всего живого на нашей планете. На использовании свойства универсальности генетического кода основаны методы генной инженерии.

Из истории открытия генетического кода

Впервые идея о существовании генетического кода сформулирована А. Дауном и в 1952 — 1954 годах. Учёные показали, что последовательность нуклеотидов, однозначно определяющая синтез той или иной аминокислоты, должна содержать не менее трёх звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном или триплетом .

Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 года. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только 4 аминокислоты могут кодироваться. Однако код не может быть и дуплетным, то есть комбинация двух нуклеотидов из четырехбуквенного «алфавита» не может охватить всех аминокислот, так как подобных комбинаций теоретически возможно только 16 (4 2 = 16).

Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, когда число возможных комбинаций составит 64 (4 3 = 64).

На этом уроке мы узнаем о значении биосинтеза белков для живых организмов, о двух этапах биосинтеза белков в клетке, транскрипции и трансляции, покажем, как последовательность нуклеотидов в ДНК кодирует последовательность аминокислот в полипептиде. Также дадим характеристику генетическому коду и основным его свойствам с позиций единства происхождения всех живых организмов Земли, рассмотрим особенности транскрипции у эукариот.

Транскрипция - механизм, с помощью которого последовательность оснований в одной из цепей молекулы ДНК «переписывается» в комплементарную ей последовательность оснований иРНК.

Для транскрипции необходимо присутствие фермента РНК-полимеразы. Так как в одной молекуле ДНК может находиться множество генов, очень важно, чтобы РНК-полимераза начала синтез информационной РНК со строго определенного места ДНК, иначе в структуре иРНК будет записана информация о белке, которого нет в природе (не нужный клетке). Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором (см. Рис. 7). РНК-полимераза «узнает» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места. Фермент продолжает синтезировать иРНК, присоединяя к ней новые нуклеотиды, до тех пор пока не дойдет до очередного «знака препинания» в молекуле ДНК - терминатора . Это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить.

Рис. 7. Синтез иРНК

У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белка. У эукариот иРНК вначале взаимодействует с ядерными белками и через ядерные поры выходит в цитоплазму, где она взаимодействует с рибосомами, и осуществляется биосинтез белка.

Рибосомы бактерии отличаются от рибосом эукариотических клеток. Они мельче и содержат более простой набор белков. Это широко используется в клинической практике, так как существуют антибиотики, которые избирательно взаимодействуют с белками рибосом прокариот, но никак не действуют на белки эукариотических организмов. При этом бактерии либо гибнут, либо их рост и развитие останавливается.

Существуют антибиотики, которые избирательно воздействуют на один из этапов синтеза белка, например на транскрипцию. К ним относятся рифамицины, продуцентом которых являются актиномицеты рода Streptomyces. Лучшим антибиотиком из этого класса является Рифампицин.

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
  1. Bio-faq.ru ().
  2. Biouroki.ru ().
  3. Youtube.com ().
  4. Sbio.info ().

Домашнее задание

  1. Вопросы 1, 2 в конце параграфа 26 (стр. 101) Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс ()
  2. Какова роль фермента РНК-полимераза в процессе синтеза и-РНК?
  3. Что такое промотор и какова его роль при синтезе иРНК?
  4. Что такое терминатор и какова его роль при синтезе иРНК?
  5. Какова дальнейшая судьба синтезированной иРНК в клетке прокариот и эукариот?

После открытия правил генетического кода, по которым наследственная информация переписывается с языка нуклеотидов на язык аминокислот, они считались универсальными. Известно не менее 30 случаев, когда генетический код используется в несколько измененном виде. Изменения могут быть самыми разнообразными: изменится значение кодона, стоп-кодон начнет кодировать какую-то аминокислоту, обычный кодон начнет выполнять роль стартового. Мы предлагаем вам десять случаев наиболее любопытных отклонений от стандартного генетического кода.

Несмотря на общепринятую «стандартность» генетического кода, известно несколько десятков примеров, когда живые организмы используют несколько измененную его версию. Некоторые изменения присущи целым таксонам, а некоторые обнаруживаются всего у нескольких видов. Известны случаи, когда часть мРНК определенного гена транслируется по стандартным правилам, а другая - по измененным. Например, при трансляции мРНК малатдегидрогеназы человека, которая закодирована в ядре, в 4% случаев стандартный стоп-кодон кодирует триптофан и аргинин . Очень часто отклонения от стандартного генетического кода наблюдаются только в некоторых органеллах. Так, впервые факт существования таких отклонений подтвердили еще в 1979 году, показав, что генетический код митохондрий человека отличается от ядерного . Наша статья посвящена наиболее удивительным случаям отклонения генетического кода от стандарта .

«Биомолекула» не раз писала о генетическом коде. Статья «Такие разные синонимы » посвящена явлению предпочтения кодонов. В статьях « » и «Эволюция генетического кода » рассказывается об эволюции генетического кода, а в публикациях «Расширенный геном » и «Слово из четырёх букв » можно почитать о перспективах его искусственного расширения.

Blastocrithidia

У простейших рода Blastocrithidia , родственных трипаносомам (рис. 1), генетический код, используемый при трансляции ядерных генов, в прямом смысле «без тормозов»: все три стоп-кодона кодируют аминокислоты. Кодон UGA кодирует триптофан, а UAG и UAA - глутамат. При этом UAA и, реже, UAG все-таки могут выступать в роли терминаторных кодонов. Оказалось, что у одного из белков, необходимых для освобождения рибосомы от мРНК после трансляции, eRF1 , чрезвычайно важный остаток серина заменен на другую аминокислоту, что понижает его сродство к UGA, благодаря чему этот стоп-кодон может функционировать как смысловой. Впрочем, окончательно неизвестно, благодаря чему UAG и UAA могут выступать и как смысловые, и как терминаторные кодоны .

Condylostoma magnum

У инфузории Condylostoma magnum каждый из стандартных стоп-кодонов способен выступать в роли смыслового: UAA и UAG могут кодировать глутамин, а UGA - триптофан. Однако механизм двойного кодирования у этого организма совершенно отличается от Blastocrithidia : значение каждого из стандартных стоп-кодонов зависит от их положения в мРНК. Стоп-кодоны, расположенные в средней части транскрипта , кодируют аминокислоты, а стоп-кодоны, находящиеся вблизи 3′-конца мРНК, работают «по специальности» и выполняют роль терминаторных. Вероятно, 3′-нетранслируемые области генов Condylostoma magnum очень короткие и консервативные и играют роль в распознавании стоп-кодонов .

Acetohalobium arabaticum

Rhabdopleura compacta

Scenedesmus obliquus

Генетический код митохондрий зеленой водоросли Scenedesmus obliquus (рис. 3) необычен тем, что кодон UCA, который обычно кодирует лейцин, функционирует как стоп-кодон. В митохондриальном геноме этой водоросли отсутствует ген, кодирующий тРНК, соответствующую кодону UCA. Вместо этого в митохондриях Scenedesmus obliquus лейцин кодирует стандартный стоп-кодон UAG .

Плоские черви класса Rhabditophora

Radopholus similis

Инфузории-туфельки

Митохондриальный генетический код инфузорий-туфелек (род Paramecium ) отличается от стандартного прежде всего числом стартовых кодонов. В роли старт-кодонов могут выступать целых пять или шесть: AUG, AUA, AUU, AUC, GUG и, возможно, GUA. Поскольку митохондриальный геном этих организмов содержит гены всего трех тРНК, бóльшая часть тРНК поступает из цитоплазмы. В связи с этим в митохондриях инфузорий-туфелек, как и в ядре многих инфузорий, стоп-кодоны UAG и UAA кодируют глутамин .

Ashbya gossypii

У дрожжей Ashbya gossypii в митохондриях кодон CUU, обычно кодирующий лейцин, кодирует аланин. Удивительно, что два других лейциновых кодона, CUC и CUG, в митохондриальном геноме полностью отсутствуют, поэтому у этих организмов лейцин кодируется только двумя кодонами - UUG и UUA - вместо стандартных пяти .

Mycobacterium smegmatis

У бактерии Mycobacterium smegmatis аспарагиновые кодоны приобретают дополнительное значение в стационарной фазе роста, а также в условиях низкого pH. Еще более любопытно, что, благодаря двусмысленности аспарагиновых кодонов, в β-субъединице РНК-полимеразы происходят замены, которые сохраняют ее функциональность, однако делают фермент устойчивым к антибиотику рифампицину, в норме блокирующему его работу , .

Разумеется, вариации стандартного генетического кода не ограничиваются приведенными примерами. Однако исключения только подтверждают правило, и это верно и для генетического кода. Несмотря на колоссальное разнообразие живых организмов, исключения из генетического кода настолько редки, что представляются не более чем любопытными курьезами. Однако эти исключения служат ценным материалом для реконструкции эволюции генетического кода и помогают глубже понять его фундаментальные свойства.

Литература

  1. Julia Hofhuis, Fabian Schueren, Christopher Nötzel, Thomas Lingner, Jutta Gärtner, et. al.. (2016). The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code . Open Biol. . 6 , 160246;
  2. B. G. Barrell, A. T. Bankier, J. Drouin. (1979). A different genetic code in human mitochondria . Nature . 282 , 189-194;
  3. Такие разные синонимы ;
  4. У истоков генетического кода: родственные души ;
  5. Эволюция генетического кода ;
  6. Расширенный геном ;
  7. Слово из четырёх букв ;
  8. Kristína Záhonová, Alexei Y. Kostygov, Tereza Ševčíková, Vyacheslav Yurchenko, Marek Eliáš. (2016). An Unprecedented Non-canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons . Current Biology . 26 , 2364-2369;
  9. Stephen M. Heaphy, Marco Mariotti, Vadim N. Gladyshev, John F. Atkins, Pavel V. Baranov. (2016). Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons inCondylostoma magnum . Mol Biol Evol . 33 , 2885-2889;
  10. L. Prat, I. U. Heinemann, H. R. Aerni, J. Rinehart, P. O"Donoghue, D. Soll. (2012). . . 109 , 21070-21075;
  11. Marleen Perseke, Joerg Hetmank, Matthias Bernt, Peter F Stadler, Martin Schlegel, Detlef Bernhard. (2011). The enigmatic mitochondrial genome of Rhabdopleura compacta(Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria . BMC Evol Biol . 11 ;
  12. A. M. Nedelcu. (2000). The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome . Genome Research . 10 , 819-831;
  13. M. J. Telford, E. A. Herniou, R. B. Russell, D. T. J. Littlewood. (2000). Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms . Proceedings of the National Academy of Sciences . 97 , 11359-11364;
  14. Joachim EM Jacob, Bartel Vanholme, Thomas Van Leeuwen, Godelieve Gheysen. (2009). A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis . BMC Research Notes . 2 , 192;
  15. Pritchard A.E., Seilhamer J.J., Mahalingam R., Sable C.L., Venuti S.E., Cummings D.J. (1990). Nucleotide sequence of the mitochondrial genome of Paramecium . Nucleic Acids Res. 18 , 173–180;
  16. Jiqiang Ling, Rachid Daoud, Marc J. Lajoie, George M. Church, Dieter Söll, B. Franz Lang. (2014). Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria . Nucleic Acids Research . 42 , 499-508;
  17. Jiqiang Ling, Patrick O"Donoghue, Dieter Söll. (2015). Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology . Nat Rev Micro . 13 , 707-721;
  18. B. Javid, F. Sorrentino, M. Toosky, W. Zheng, J. T. Pinkham, et. al.. (2014). Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance . Proceedings of the National Academy of Sciences . 111 , 1132-1137;
  19. Alexander O. Frolov, Marina N. Malysheva, Anna I. Ganyukova, Vyacheslav Yurchenko, Alexei Y. Kostygov. (2017). Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae) . European Journal of Protistology . 57 , 85-98;
  20. Johannes Sikorski, Alla Lapidus, Olga Chertkov, Susan Lucas, Alex Copeland, et. al.. (2010). Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288T) . Stand. Genomic Sci. . 3 , 57-65.
Поделиться