Произведение совместных событий. Вероятность произведения событий. Формула полной вероятно-сти

Мы уже знаем, что вероятность – это численная мера возможности наступления случайного события, т.е. события, которое может произойти, а может и не произойти при осуществлении определенной совокупности условий. При изменении совокупности условий вероятность случайного события может измениться. В качестве дополнительного условия мы можем рассмотреть наступление другого события. Итак, если к комплексу условий, при котором происходит случайное событие А , добавить еще одно, состоящее в наступлении случайного события В , то вероятность наступления события А будет называться условной.

Условная вероятность события А - вероятность появления события А при ус­ловии, что произошло событие В. Условная вероятностьобозначается (A ).

Пример 16. В ящике имеются 7 белых и 5 черных шаров, отличаю­щихся лишь цветом. Опыт состоит в том, что случайным образом вынимают один шар и, не опуская его обратно, вынимают еще один шар. Какова вероятность, что, второй вынутый шар – черный, если при первом извлечении достали белый шар?

Решение.

Перед нами два случайных события: событие А – первый вынутый шар оказался белым, В – второй вынутый шар - черный. А и В несовместные события, воспользуемся классическим определением вероятности. Число элементарных исходов при извлечении первого шара – 12, а число благоприятных исходов достать белый шар – 7. Следовательно, вероятность P(А) = 7/12.

Если первый шар оказался белым, то условная вероятность события В - появления второго черного шара (при условии, что первый шар был белым) - равна (В) = 5/11, так как перед выни­манием второго шара осталось 11 шаров, из которых 5 черных.

Отметим, что вероятность появления черного шара при втором извлечении не зависела бы от цвета вынутого первого шара, если, вы­нув первый шар, мы положили бы его обратно в ящик.

Рассмотрим два случайных события А и В. Пусть вероятности P(А) и (В) известны. Определим, чему равна вероятность появления и события А, и события В, т.е. произведения этих событий.

Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при том условии, что первое событие произошло:

Р(А× В) = Р(А)× (В) .

Так как для вычисления вероятности произведения не играет роли какое из рассмотренных событий А и В было первым, а какое вторым, то можно записать:

Р(А× В) = Р(А) × (В) = Р(В) × (А).

Теорему можно распространить на произведение п событий:

Р(А 1 А 2 . А п) = Р(А х) Р(А 2 /А 1) .. Р(А п /А 1 А 2 ... А п-1).

Пример 17. Для условий предыдущего примера вычислить вероятность извлечения двух шаров: а) белого шара первым, а черного вторым; б) двух черных шаров.

Решение.

а)Из предыдущего примера мы знаем вероятности достать из ящика белый шар первым и черный шар вторым, при условии, что первым извлекли белый шар. Для подсчета вероятности появления обоих событий вместе воспользуемся теоремой умножения вероятностей: Р(А× В) = Р(А) × (В)= .

б) Аналогично рассчитаем вероятность вынуть два черных шара. Вероятность достать первым черный шар . Вероятность достать черный шар во второй раз при условии, что первый вынутый черный шар мы не опускаем обратно в ящик (черных шаров осталось 4, а всего шаров стало 11). Результирующую вероятность можно подсчитать по формуле Р(А×В)= Р(А) × (В) 0,152.

Теорема умножения вероятностей имеет более простой вид, если события А и В независимые.

Событие В называют независимым от события А, если вероят­ность события В не изменяется от того, произошло событие А или нет. Если событие В является независимым от события А, то его условная (В) равна обычной вероятности P(В):

Оказывается, что если событие В будет независимым от события А , то и событие А будет независимым от В , т.е. (А)= P(А).

Докажем это. Подставим равенство из определения независимости события В от события А в теорему умножения вероятностей: Р(А×В) = Р(А)× (В)= Р(А)× (В). Но с другой стороны Р(А× В) = Р(В) × (А). Значит Р(А) × (В)= Р(В) × (А) и (А)= P(А).

Таким образом, свойство независимость (или зависимость) событий всегда взаимно и можно дать следующее определение: два события называются независимыми , если появление одного из них не изменяет вероятность появления другого.

Следует отметить, что в основе независимости событий лежит независимость физической природы их происхождения. Это означает, что наборы случайных факторов, приводящих к тому или иному исходу испытания одного и другого случайного события, различны. Так, например, поражение цели одним стрелком никак не влияет (если, конечно, не придумывать никаких экзотических причин) на вероятность попадания в цель вторым стрелком. На практике независимые события встречаются очень часто, так как причинная связь явлений во многих случаях отсутствует или несущест­венна.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению вероятности этих событий: Р(А×В) = Р(А) × P(В).

Из теоремы умножения вероятностей для независимых событий вытекает следующее следствие.

Если события А и В несовместные и P(A)¹0, P(В)¹0, то они зависимы.

Докажем это способом от противного. Предположим, что несовместные события А и В независимы. Тогда Р(А×В) = Р(А) ×P(В). И так как P(A)¹0, P(В)¹0 , т.е. события А и В не являются невозможными, то Р(А×В)¹0. Но, с другой стороны, событие А ž В является невозможным как произведение несовместных событий (это рассматривалось выше). Значит Р(А×В)=0. получили противоречие. Таким образом, наше исходное предположение неверно. События А и В – зависимые.

Пример 18 . Вернемся теперь к нерешенной задаче о двух стрелках, стреляющих по одной цели. Напомним, что при ве­роятности попадания в цель первым стрелком – 0,8, а вторым 0,7 необходимо найти вероятность поражения цели.

События А и В – попадание в цель соответственно первым и вторым стрелком – совместные, поэтому для нахождения вероятности суммы событий А + В – поражение цели хотя бы одним стрелком – необходимо воспользоваться формулой: Р(А +В)=Р(А)+ Р(В) Р(А žВ). События А и В независимые, поэтому Р(А× В) = Р(А) × P(В).

Итак, Р(А +В) = Р(А) + Р(В) - Р(А) × P(В).

Р(А +В)= 0,8 + 0,7 – 0,8×0,7 = 0,94.

Пример 19.

Производится два независимых выстрела в одну и ту же мишень. Вероятность попадания при первом выстреле 0,6, а при втором - 0,8. Найти вероятность попадания в мишень при двух выстрелах.

1) Обозначим попадание при первом выстреле как событие
А 1 , при втором - как событие А 2 .

Попадание в мишень предполагает хотя бы одно попада­ние: или только при первом выстреле, или только при втором, или и при первом, и при втором. Следовательно, в задаче требу­ется определить вероятность суммы двух совместных событий А 1 и А 2:

Р(А 1 + А 2) = Р(А 1) + Р(А 2)-Р(А 1 А 2).

2) Так как события независимы, то Р(А 1 А 2) = Р(А 1) Р(А 2).

3) Получаем: Р(А 1 + А 2) = 0,6 + 0,8 - 0,6 0,8 = 0,92.
Если события несовместны, то Р(А В) = 0 и Р(А + В) = = Р(А) + Р(В).

Пример 20.

В урне находятся 2 белых, 3 красных и 5 синих одинаковых по размеру шаров. Какова вероятность, что шар, случайным образом извлеченный из урны, будет цветным (не белым)?

1) Пусть событие А - извлечение красного шара из урны,
событие В - извлечение синего шара. Тогда событие (А + В)
есть извлечение цветного шара из урны.

2) Р(А) = 3/10, Р(В) = 5/10.

3) События А и В несовместны, так как извлекается только
один шар. Тогда: Р(А + В) = Р(А) + Р(В) = 0,3 + 0,5 = 0,8.

Пример 21.

В урне находятся 7 белых и 3 черных шара. Какова вероят­ность: 1) извлечения из урны белого шара (событие А); 2) из­влечения из урны белого шара после удаления из нее одного шара, который является белым (событие В); 3) извлечения из урны белого шара после удаления из нее одного шара, который является черным (событие С)?

1) Р(А) = = 0,7 (см. классическую вероятность).

2)Р В (А) = = 0,(6).

3) Р С (А) = | = 0,(7).

Пример 22.

Механизм собирается из трех одинаковых деталей и счита­ется неработоспособным, если все три детали вышли из строя. В сборочном цехе осталось 15 деталей, из которых 5 нестандарт­ных (бракованных). Какова вероятность того, что собранный из взятых наугад оставшихся деталей механизм будет неработос­пособным?

1) Обозначим искомое событие через А, выбор первой не­стандартной детали через А 1 , второй- через А 2 , третьей - через А 3

2) Событие А произойдет, если произойдет и событие А 1 и событие А 2 , и событие А 3 т. е.

А = А 1 А 2 А 3 ,

так как логическое «и» соответствует произведению (см. раз­дел «Алгебра высказываний. Логические операции»).

3) События А 1 , А 2 , А 3 зависимы, поэтому Р(А 1 А 2 А 3) =
= Р(А 1) Р(А 2 /А 1) Р(А 3 /А 1 А 2).

4)Р(А 1) = ,Р(А 2 /А 1) = ,Р(А 3 /А 1 А 2)= . Тогда

Р(А 1 А 2 А 3) = 0,022.

Для независимых событий: Р(А В) = Р(А) Р(В).

Исходя из вышеуказанного, критерий независимости двух событий А и В:

Р(А) = Р В (А) = Р (А), Р(В) = Р А (В) =Р (В).

Пример 23.

Вероятность поражения цели первым стрелком (событие А) равна 0,9, а вероятность поражения цели вторым стрелком (событие В) равна 0,8. Какова вероятность того, что цель будет поражена хотя бы одним стрелком?

1) Пусть С - интересующее нас событие; противоположное событие - состоит в том, что оба стрелка промахнулись.

3) Так как при стрельбе один стрелок не мешает другому, то события и независимы.

Имеем: Р() = Р() Р() = =(1 - 0,9) (1 - 0,8) =

0,1 0,2 = 0,02.

4) Р(С) = 1 -Р() = 1 -0,02 = 0,98.

Формула полной вероятности

Пусть событие А может произойти в результате проявления одного и только одного события Н i (i = 1,2,... n) из некоторой полной группы несовместных событий H 1 , H 2,… H n . События этой группы обычно называют гипотезами.

Формула полной вероятности. Вероятность события А рав­на сумме парных произведений вероятностей всех гипотез, об­разующих полную группу, на соответствующие условные ве­роятности данного события А:

Р(А) = , где = 1.

Пример 24.

Имеется 3 одинаковые урны. В первой - 2 белых и 1 чер­ный шар, во второй - 3 белых и 1 черный шар, в третьей урне - 2 белых и 2 черных шара. Из выбранной наугад урны выбира­ется 1 шар. Какова вероятность того, что он окажется белым?

Все урны считаются одинаковыми, следовательно, вероят­ность выбрать i-ю урну есть

Р(H i) = 1/3, где i = 1, 2, 3.

2) Вероятность вынуть белый шар из первой урны: (А) = .

Вероятность вынуть белый шар из второй урны: (А) = .

Вероятность вынуть белый шар из третьей урны: (А) = .

3) Искомая вероятность:

Р(А) = =0.63(8)

Пример 25.

В магазин для продажи поступает продукция трех фабрик, относительные доли которых: I - 50%, II - 30%, III - 20%. Для продукции фабрик брак соответственно составляет: I - 2%, П - 2%, III - 5%. Какова вероятность того, что изделие этой продукции, случайно приобретенное в магазине, окажется доб­рокачественным (событие А)?

1) Здесь возможны следующие три гипотезы: H 1 , H 2, H 3 -
приобретенная вещь выработана соответственно на I, II, III фабриках; система этих гипотез полная.

Вероятности: P(H 1) = 0,5; Р(Н 2) = 0,3; Р(Н 3) = 0,2.

2) Соответствующие условные вероятности события А рав­ны: (A) = 1-0,02 = 0,98; (A) = 1-0,03 = 0,97; (А) = = 1-0,05 = 0,95.

3) По формуле полной вероятности имеем: Р(А) = 0,5 0,98 + + 0,3 0,97 + 0,2 0,95 = 0,971.

Формула апостериорной вероятности (формула Бейеса)

Рассмотрим ситуацию.

Имеется полная группа несовместных гипотез H 1 , H 2, … H n , вероятности которых (i = 1, 2, ... п) известны до опыта (вероят­ности априори). Производится опыт (испытание), в результате которого зарегистрировано появление события А, причем изве­стно, что этому событию наши гипотезы приписывали опреде­ленные вероятности (i=1, 2, ...п). Каковы будут вероятности этих гипотез после опыта (вероятности апостериори)?

Ответ на подобный вопрос дает формула апостериорной вероятности (формула Бейеса):

, где i=1,2, ...п.

Пример 26.

Вероятность поражения самолета при одиночном выстреле для 1-го ракетного комплекса (событие А) равна 0,2, а для 2-го (событие В) - 0,1. Каждый из комплексов производит по одно­му выстрелу, причем зарегистрировано одно попадание в само­лет (событие С). Какова вероятность, что удачный выстрел при­надлежит первому ракетному комплексу?

Решение.

1) До опыта возможны четыре гипотезы:

H 1 = А В - самолет поражен 1 -м комплексом и самолет поражен 2-м комплексом (произведение соответствует логичес­кому «и»),

H 2 = А В - самолет поражен 1 -м комплексом и само­лет не поражен 2-м комплексом,

H 3 = А В - самолет не поражен 1 -м комплексом и са­молет поражен 2-м комплексом,

H 4 = А В - самолет не поражен 1 -м комплексом и са­молет не поражен 2-м комплексом.

Эти гипотезы образуют полную группу событий.

2) Соответствующие вероятности (при независимом действии комплексов):

Р(H 1) = 0,2 0,1 = 0,02;

Р(H 2) = 0,2 (1-0,1) = 0,18;

Р(Н 3) = (1-0,2) 0,1 = 0,08;

Р(H 4) = (1-0,2) (1-0,1) = 0,72.

3) Так как гипотезы образуют полную группу событий, то должно выполняться равенство = 1.

Проверяем: Р(H 1) + Р(Н 2) + Р(H 3) + Р(H 4) = 0,02 + 0,18 + + 0,08 + 0,72 = 1, таким образом, рассматриваемая группа гипо­тез верна.

4) Условные вероятности для наблюдаемого события С при данных гипотезах будут: (С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H 1 , предполагает два попадания:

(С) = 1; (С) = 1.

(С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H 4 предполагает отсутствие попаданий. Следовательно, гипотезы H 1 , и H 4 отпадают.

5)Вероятности гипотез H 2 и H 3 вычисляем по формуле Бейеса:

0,7, 0,3.

Таким образом, с вероятностью приблизительно 70% (0,7) можно утверждать, что удачный выстрел принадлежит первому ракетному комплексу.

5.4. Случайные величины. Закон распределения дискретной случайной величины

Достаточно часто на практике рассматриваются такие испытания, в результате реализации которых случайным образом получается некоторое число. Например, при бросании игрального кубика выпадает число очков от 1 до 6, при взятии 6 карт из колоды можно получить от 0 до 4 тузов. За определенный промежуток времени (скажем, день или месяц) в городе регистрируется то или иное количество преступлений, происходит какое-то количество дорожно-транспортных происшествий. Из орудия производится выстрел. Дальность полета снаряда также принимает какое-либо значение случайным образом.

Во всех перечисленных испытаниях мы сталкиваемся с так называемыми случайными величинами.

Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной .

Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей изучала главным образом случайные события, то современная теория вероятностей преимущественно имеет дело со случайными величинами.

Далее будем обозначать случайные величины прописными латинскими буквами X, Y, Z и т.д., а их возможные значения – соответствующими строчными x, y, z. Например, если случайная величина имеет три возможных значения, то будем обозначать их так: , , .

Итак, примерами случайных величин могут быть:

1) количество очков, выпавших на верхней грани игрального кубика:

2) число тузов, при взятии из колоды 6 карт;

3) количество зарегистрированных преступлений за день или месяц;

4) число попаданий в мишень при четырех выстрелов из пистолета;

5) расстояние, которое пролетит снаряд при выстреле из орудия;

6) рост случайно взятого человека.

Можно заметить, что в первом примере случайная величина может принять одно из шести возможных значений: 1, 2, 3, 4, 5 и 6. Во втором и четвертом примерах число возможных значений случайной величины пять: 0, 1, 2, 3, 4. В третьем примере значением случайной величины может быть любое (теоретически) натуральное число или 0. В пятом и шестом примерах случайная величина может принимать любое действительное значение из определенного промежутка (а , b ).

Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной).

Непрерывной случайной величиной называется такая случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Для задания случайной величины недостаточно перечислить ее всевозможные значения. Например, во втором и в третьем примерах случайные величины могли принимать одни и те же значения: 0, 1, 2, 3 и 4. Однако вероятности, с которыми эти случайные величины принимают свои значения, будут совершенно разными. Поэтому для задания дискретной случайной величины кроме перечня ее всех возможных значений нужно еще указать их вероятности.

Соответствие между возможными значениями случайной величины и их вероятностями называютзаконом распределения дискретной случайной величины. , …, Х=

Многоугольник распределения, также как и ряд распределения, полностью характеризует случайную величину. Он является одним из форм закона распределения.

Пример 27. Случайным образом бросается монета. Построить ряд и многоугольник распределения числа выпавших гербов.

Случайная величина, равная количеству выпавших гербов, может принимать два значения: 0 и 1. Значение 1 соответствует событию - выпадение герба, значение 0 – выпадению решки. Вероятности выпадения герба и выпадения решки одинаковы и равны . Т.е. вероятности, с которыми случайная величина принимает значения 0 и 1, равны . Ряд распределения имеет вид:

X
p

Определение. Произведением или пересечением событий А и В называют событие, состоящее в одновременном наступлении событий и А, и В. Обозначение произведения: АВ или А В.

Пример . Двукратное попадание в цель есть произведение двух событий. Ответ на оба вопроса билета на экзамене есть произведение двух событий.

События А и В называют несовместными , если их произведение – событие невозможное, т.е. АВ = V.

События А – выпадение герба и В – выпадение цифры при однократном бросании монеты наступить одновременно не могут, их произведение событие невозможное, события А и В несовместные.

Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию.

Рис. 6.4. Геометрическая интерпретация произведения(а) и суммы(б) двух совместных событий

Пусть событие А – множество точек области А; событие В – множество точек области В. Заштрихованная область соответствует событию АВ на рис.6.4,а; событию на рис.6.4,б.

Для несовместных событий А и В имеем: АВ=V (рис.6.5,а). Событию А+В соответствует заштрихованная область на рис.6.5,б.

Рис. 6.5. Геометрическая интерпретация произведения(а) и суммы(б) двух несовместных событий

События и называют противоположными , если они несовместны и в сумме составляют достоверное событие, т.е.

Например, произведем один выстрел по цели: событие – стрелок попал в цель, не попал; подброшена монета: событие – выпадение орла, − выпадение цифры; школьники пишут контрольную работу: событие – ни одной ошибки в контрольной работе, − есть ошибки в контрольной работе; студент пришел сдавать зачет: событие А − сдал зачет, − не сдал зачет.

В классе есть мальчики и девочки, отличники, хорошисты и троечники, изучающие английский и немецкий язык. Пусть событие M – мальчик, О – отличник, А – изучающий английский язык. Может ли случайно вышедший из класса ученик быть и мальчиком, и отличником, и изучающим английский язык? Это и будет произведение или пересечение событий МОА.

Пример . Бросают игральный кубик – куб, сделанный из однородного материала, грани которого занумерованы. Наблюдают за числом (числом очков), выпадающим на верхней грани. Пусть событие А – появление нечетного числа, событие В – появление числа, кратного трем. Найти исходы, составляющие каждое из событий: U, А, А+В, АВ и указать их смысл.

Решение . Исход – появление на верхней грани любого из чисел 1, 2, 3, 4, 5, 6. Множество всех исходов составляет пространство элементарных событий Ясно, что событие , событие

Событие − появление либо нечетного числа, либо числа, кратного трем. При перечислении исходов учтено, что каждый исход в множестве может содержаться только один раз.



Событие − появление и нечетного числа и числа, кратного трем.

Пример. Проверено домашнее задание у трех студентов. Пусть событие − выполнение задания -м студентом, Каков смысл событий: и ?

Решение. Событие − выполнение задания хотя бы одним студентом, т.е. или любым одним студентом (или первым, или вторым, или третьим), или любыми двумя, или всеми тремя.

Событие − задание не выполнено ни одним студентом: ни первым, ни вторым, ни третьим. Событие − выполнение задания тремя студентами: и первым, и вторым, и третьим.

При рассмотрении совместного наступления нескольких событий возможны случаи, когда появление одного из них сказывается на возможности появления другого. Например, если осенью день солнечный, то менее вероятно, что погода испортится (начнется дождь). Если же солнца не видно, то больше шансов, что пойдет дождь.

Определение. Событие А называется независимым от события В, если вероятность события А не меняется в зависимости от того, произошло или нет событие В. Иначе событие А называется зависимым от события В. Два события А и В называются независимыми , если вероятность одного из них не зависит от появления или не появления другого, зависимыми – в противном случае. События называют попарно независимыми, если каждые два из них независимы друг от друга.

Теорема. (Умножения вероятностей ) Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

Р(А·В)=Р(А)·Р(В)

Эта теорема справедлива для любого конечного числа событий, если только они независимы в совокупности, т.е. вероятность любого из них не зависит от того, произошли или нет другие из этих событий.

Пример . Студент сдает три экзамена. Вероятность успешной сдачи первого экзамена 0,9, второго 0,65, третьего – 0,35. Найти вероятность того, что он не сдаст хотя бы один экзамен.

Решение : Обозначим А – событие студент не сдал хотя бы один экзамен. Тогда Р(А) = 1- Р(ùА), где ùА – противоположное событие студент сдал все экзамены. Поскольку сдача каждого экзамена не зависит от других экзаменов, то Р(А)=1-Р(ùА)= 1- 0,9*0,65*0,35=0,7953.

Определение . Вероятность события А, вычисленная при условии, что имеет место событие В, называется условной вероятностью события А при условии появления В и обозначается Р В (А) или Р(А/В).

Теорема Вероятность появления произведения двух событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло:

Р(А·В)=Р(А)·Р А (В)=Р(В)·Р В (А).(*)

Пример . Ученик дважды извлекает по одному билету из 34. Какова вероятность того, что он сдаст экзамен, если им подготовлено 30 билетов и в первый раз вынут неудачный билет?

Решение : Пусть событие А состоит в том, что в первый раз достался неудачный билет, событие В – во второй раз вынут удачный билет. Тогда А·В – ученик сдаст экзамен (при указанных обстоятельствах). События А и В зависимы, т.к. вероятность выбора удачного билета со второй попытки зависит от исхода первого выбора. Поэтому используем формулу (6):

Р(А·В) = Р(А)·РА(В) = (4/34)*(30/33)= 20/187

Заметим, что полученная в решении вероятность ≈0,107. Почему так мала вероятность сдачи экзамена, если выучено 30 билетов из 34 и дается две попытки?!

Теорема . (Расширенная теорема сложения ) Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления (произведения):

Р(А+В)=Р(А)+Р(В)-Р(А·В).

Пример . Два студента решают задачу. Вероятность того, что первый студент решит задачу (событие А), равна 0,9; вероятность того, что второй студент решит задачу (событие В), равна 0,8. Какова вероятность того, что задача будет решена?

При отыскании вероятностей событий использовалось классическое определение вероятности.

Начнем с задачи.

Предположим, что вероятность получения вами пятерки за контрольную равна 0,5, а четверки - 0,3. Какова вероятность того, что за контрольную вы получите 4 или 5?

Некоторые сразу выпалят: «0,8», но почему именно так? Почему, например, не 0,15 (перемножили, а не сложили)? Разберемся.

Предположим, есть некоторый опыт, у которого есть исходов. Из них наступлению события благоприятны , а событию - . Нетрудно по формуле найти вероятности наступления каждого из событий - это соответственно и . Но какова вероятность того, что наступит либо первое событие, либо второе? Иначе говоря, мы ищем вероятность объединения этих событий. Для этого надо выяснить, сколько у нас благоприятных исходов. ? Не совсем. Ведь может случиться так, что эти события выполнятся одновременно.

Тогда предположим, что события непересекающиеся, то есть не могут выполняться одновременно. Вот тогда получаем, что благоприятных исходов для объединения - . Значит, вероятность объединения будет равна:

Вероятность объединения несовместных событий равна сумме их вероятностей.

Обратим внимание: здесь речь идет об ОДНОМ эксперименте, в результате которого может наступить либо первое событие, либо второе, но не оба сразу.

В частности, в примере с контрольной мы понимаем, что ученик не может одновременно получить за контрольную и 5, и 4 (речь идет об одной оценке за одну и ту же контрольную), значит, вероятность того, что он получит 4 или 5, равна сумме вероятностей, то есть, все-таки, 0,8.

Ответ: 0,8.

А что делать, если события пересекаются, то есть существуют исходы, благоприятные для них обоих? Такая ситуация будет рассмотрена в конце урока.

2. Математический форум Math Help Planet ()

3. Интернет-сайт "Математика, которая мне нравится" ()

Домашнее задание

1. Два стрелка стреляют по мишени. Первый стрелок поражает мишень с вероятностью 0,9. Второй стрелок поражает мишень с вероятностью 0,8. Найти вероятность того, что мишень будет поражена.

2. Случайный эксперимент состоит в подбрасывании двух игральных костей. Одна из игральных костей окрашена в синий цвет, другая - в красный. Найти вероятность того, что на синей игральной кости выпадет число 3, а на красной игральной кости выпадет число 4.

Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.

Также можно записать:

Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.

Если события независимые, то , и теорема умножения вероятностей принимает вид:

В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.

Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события .

Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна

Здесь событие А обозначает наступление хотя бы одного из событий A i , а q i – вероятность противоположных событий .

Пример 1. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.



Решение.

Обозначим появление хотя бы одной бубновой карты – событие А , появление хотя бы одной червонной карты – событие В . Таким образом нам надо определить вероятность события С = А + В .

Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого.

Всего в колоде 13 червонных и 13 бубновых карт.

Найдем вероятность события, противоположного событию С (среди извлеченных карт не будет ни бубновых ни червовых):

при вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна , при вытаскивании второй карты - , третьей - , четвертой - .

Тогда вероятность того, что среди вынутых карт не будет ни бубновых, ни червонных равна .

Искомая вероятность

Пример 2. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?

Решение .

Вероятность выпадения 6 очков при одном броске кости равна . Вероятность того, что не выпадет 6 очков - . Вероятность того, что при броске трех костей не выпадет ни разу 6 очков равна .

Тогда вероятность того, что хотя бы один раз выпадет 6 очков равна .

Пример 3. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности: а) хотя бы одного выстрела, б) двух выстрелов, в) двух осечек.

Решение .

Вероятность выстрела при первом нажатии на курок (событие А ) равна , вероятность осечки - Вероятность выстрела при втором нажатии на курок зависит от результата первого нажатия.

Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.

Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.

Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если в первый раз была осечка.

Рассмотрим вероятности того, что во втором случае произойдет выстрел (событие В ) или произойдет осечка (событие ) при условии, что в первом случае произошел выстрел (событие А ) или осечка (событие ).

Два выстрела подряд

Первая осечка, второй выстрел

Первый выстрел, вторая осечка

Две осечки подряд

Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)

Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме

Пример 4. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.

Решение .

Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .

Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна

Вероятность того, что второй стрелок попадет в цель, а первый – нет равна

Тогда вероятность попадания в цель только одним стрелком равна

Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:

Тогда вероятность того, что в цель попадет только один стрелок равна:

Пример 5. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.

Решение .

Обозначим бракованную деталь – событие А, не бракованную – событие .

Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.

Пример 6. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0,6, 0,7, 0,8, 0,9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках.

Решение .

а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна

Вероятность того, что нужная деталь находиться не более, чем в трех ящиках равна вероятности того, что она не находится во всех четырех ящиках.

б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще.

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

Поделиться