Электронная конфигурация атома. В.П.Дядченко "Введение в стереохимию" (7) Способы изображения оптических изомеров

Среди соединений, содержащих замкнутую сопряженную систему π-электронов, интересны ароматические соединения. Несмотря на высокую сте­пень ненасыщенности, ароматические соединения устойчивы к действию окислителей и температуры, они более склонны вступать в реакции замеще­ния, а не присоединения. Эти соединения обладают повышенной термодина­мической стабильностью по сравнению с сопряженными системами с откры­той цепью. Известна также тенденция некоторых циклических соединений превращаться при благоприятных условиях в ароматические.

К ароматическим соединениям прежде всего относятся бензол и вещест­ва, сходные с ним. Но могут иметь и существенно отличающуюся структуру. Замкнутая цепь может состоять не только из 12 С (карбоциклы), но и содержать гетероатомы (гетероциклы). Единая замкнутая система π-электронов может образовываться посредством как π,π-, так и р,π-сопряжения. Совокупность характерных свойств сопряженных систем была объеди­нена понятием ароматичности. В 1865 г. Ф. А. Кекуле предложил описывать бензол при помощи двух структур, между которыми ос­циллирует молекула бензола. Но индивидуальная структура Кекуле не может объяс­нить симметрию и характерную реакционную способность бензола. Бензол представляет собой плоский правильный шестиугольник с валентными углами 120°. Все 12 С- 12 С связи равноценны, длина их составляет 0,139 нм, т. е. является промежуточной между длинами одинарной и двойной связей. Все 12 С находятся в sp 2 -гибридизации, и все σ-связи С-С и С-Н в одной плоскости.

Каждый 12 С в молекуле бензола имеет одну негибридизованную р-орбиталь. Шесть этих орбиталей располагаются перпендикулярно плоскому σ-скелету и параллельно друг другу. При их взаимном перекрывании образуется единое π-электронное облако, т. е. осуществляется круговое сопряжение. π-Электронная плотность равномерно распределена по всей циклической системе.

Определение теплот сгорания или гидрирования циклических соединений и сравнение экспериментальных значений с рассчитанными, исходя из пред­положения, что соединение содержит только изолированные двойные связи, является одним из доказательств ароматичности. При гидрировании циклогексена до циклогексана выделяется 120 кДж/моль теплоты.

Если представить бензол структурой Кекуле с тремя двойными связями, то теплота гидрирования бензола должна быть в три раза больше теплоты гидрирования циклогексена:

Экспериментально определяемая величина намного меньше. Следователь­но, бензол обладает меньшей энергией, чем гипотетический циклогексатриен. 151 кДж/моль - эмпирическую энергию сопряжения (энергию делокализации). Для бензола энергия сопряжения на порядок выше, чем для бутадиена-1,3. Чтобы нарушить ароматическую систему бензола, нужно затратить количество энер­гии, равное этому значению.

Критерии ароматичности. На основании теоретических расчетов и экс­периментального изучения циклических сопряженных систем было установ­лено, что соединение ароматично, если оно имеет:

    плоский циклический σ-скелет;

    сопряженную замкнутую π-электронную систему, охватывающую все атомы цикла и содержащую 4п + 2π- электронов, где п = 0, 1, 2, 3 и т. д. – правило Хюккеля.

Критерии ароматичности позволяют отличать сопряженные ароматические системы от всех других. Бензол содержит секстет π-электронов и соответствует правилу Хюккеля при п = 1.

Конденсированные ароматические системы. Правило Хюккеля было сформулировано для плоских моноциклических систем. Но его можно приме­нить и к плоским конденсированным системам, в которых нет атомов, являю­щихся общими более чем для двух циклов. К таким системам относятся мно­гоядерные ароматические углеводороды - нафталин, антрацен, фенантрен:

В этих соединениях все атомы углерода находятся в состоянии sp 2 -гибри­дизации, циклический σ-скелет плоский, π-электронное облако охватывает все атомы углерода циклов, число π-электронов подчиняется правилу Хюкке­ля. В конденсированных аренах нет полной выравненности электронной плотности, и они менее термодинамически стабильны.

Многие ароматические полициклические углеводороды обладают канце­рогенными свойствами и интенсивно изучаются в связи с проблемами возник­новения и профилактики рака. Некоторые канцерогенные ароматические со­единения обнаружены в табачном дыме.

Небензоидные ароматические соединения. Существуют циклические сопряженные системы, не содержащие шестичленных циклов, но соответст­вующие критериям ароматичности и обладающие ароматическими свойства­ми. Правило Хюккеля не ограничивает проявление ароматичности только нейтральными частицами. Ароматическими могут быть карбанионы и карбокатионы.

Нейтральная молекула циклопентадиена не является ароматической, (один 12 С в sp 3 -гибридизации и не имеет р- АО, цикл не плоский). Атомы водорода метиленовой группы весьма подвижны. При дейст­вии на циклопентадиен натрием в тетрагидрофуране или гидридом натрия в 1,2-диметоксиэтане отщепляется протон и образуется циклопентадиенид-ион:

После разрыва связи С-Н у 12 С остается два электрона. Теперь все атомы углерода находятся в sp 2 -гибридном состоянии, в молекуле имеются плоский циклический σ-скелет и единая замкнутая сопряженная система, со­держащая на пяти p-орбиталях шесть π-электронов. Это соответствует всем критериям ароматичности. Чтобы отра­зить равномерное распределение «-» заряда, циклопентадиенид-ион изображают структурой с кружком и знаком «минус» в кружке:

Циклопентадиенид-ион это π-избыточная система, высту­пать донором электронной плотности по отношению к атомам или молекулам с вакантными орбиталями. Он образует с ионами металлов металлоцены (ферроцен). В ферроцене ион железа находится на равном расстоянии между двумя па­раллельными плоскостями циклопентадиенид-ионов - «сендвичевая структура». Производное ферроцена - ферроцерон - стимулирует процессы кроветворения и применяется при анемиях.

Циклогептатриен - циклическая система, содержащая семь 12 С и 6 π-электронов. И в этом случае 12 С метиленовой груп­пы находится в состоянии sp 3 -гибридизации и не имеет p-орбитали. При от­щеплении от метиленовой группы водорода в виде гидрид-иона образуется циклогептатриенил-катион (тропилий-катион):

В тропилий-катионе седьмая р-орбиталь вакантна и перекрывается с соседними p-орбиталями с образованием единой со­пряженной системы. Он удовлетворяет критериям ароматич­ности. Положительный заряд равномерно распределяется по всей системе. Се­мичленное кольцо лежит в одной плоскости, расстояния С-С равны 0,140 нм. В природе распространена семичленная ароматическая система трополона. Некоторые производные трополона являются природны­ми антибиотиками - фунгицидами.

Еще одним примером небензоидных ароматических соединений - азулен. Это углеводород, содержащий конденсирован­ные семичленный и пятичленный циклы. Каждый из 10 12 С находится в состоянии sp 2 -гибридизации. Единая сопряженная систе­ма содержит 10 π-электронов. Азулен ароматичен и обладает высокой энерги­ей стабилизации (180 кДж/моль). В отличие от других ароматических углево­дородов, азулен (I) обладает дипольным моментом. Наличие дипольного момента заставляет предполагать, что значительный вклад в строение азулена вносит структура (II), в которой одно кольцо представляет собой циклопентадиенид-ион, а второе - ароматический тропилий-катион:

6801 0

s-Элементами называют элементы I и II групп (+ Не , находящийся в группе 0 (VIII) периодической таблицы). Все они, кроме H и Не , металлы. Металлы I группы называют щелочными , так как реагируют с водой с образованием щелочей. Металлы II группы, кроме Be , называют щелочноземельными . Термин «щелочная земля» обозначает оксиды этих металлов. Эти оксиды реагируют с водой с образованием щелочей.

Для s-элементов характерна конфигурация валентных электронов ns 1 (1 группа) или ns 2 (2 группа). Важнейшее химическое свойство металлов 1 группы — способность к образованию положительных однозарядных катионов. Высокие значения окислительно-восстановительных потенциалов металлов I и II групп свидетельствуют об их значительной реакционной способности, поэтому в обычных условиях они встречаются только в виде ионов. Эти ионы, в зависимости от рН, могут находиться в свободном виде или в виде комплексов, чаще всего с водой, углекислотой, ионами галогенов.

С водой щелочные металлы реагируют, выделяя большое количество теплоты (экзотермическая реакция). По мере увеличения атомного номера реакционная способность повышается настолько, что, начиная с К , образующийся в реакции Н 2 возгорается, часто со взрывом. Значительная восстановительная способность щелочных металлов объясняется легкостью отдачи ими электрона.

Таблица 1. Металлы с электронной конфигурацией s

1(главная)

2 (главная)

Н


Li

Вe

Na

Mg

К

Ca

Rb

Sr

Cs

Ba

Fr

Ra

Во внешней оболочке атомов всех s-металлов содержатся один (у элементов I группы — Li, Na, К, Rb, Cs, Fr ) или два (у элементов II группы — Be, Mg, Са, Sr, Ва, Ra ) электрона, очень легко отделяемых с образованием ионов, которые по конфигурации электронных оболочек аналогичны благородным газам. Изотопы всех щелочных металлов содержат некомпенсированный ядерный спин, то есть парамагнитны. В цельной крови эти изотопы распределяются согласно следующему правилу: чем больше радиус иона, тем выше его содержание в клетках крови (табл. 6).

Таблица 2. Соотношение коэффициента распределения К р и радиуса ионов щелочных металлов

Атомный Номер

Поскольку ионы металлов I группы крупные, но не содержат d-электронов, комплексные соединения они образуют слабо, причем их способность к комплексообразованию с увеличением атомного номера уменьшается. Если хелатные комплексы все же образуются, их лиганды чаще всего оказываются кислородсодержащими.

Металлы II группы образуют комплексные соединения легче. Как правило, лигандами в этом случае оказываются сильные комплексообразователи с кислородными и азотными электроннодопорными атомами. Например, хелатный лиганд ЭДТА (рис. 1) часто используют для титриметрического определения концентрации ионов Са 2+ и Mg 2+ при анализе жесткости воды.

Рис. 1. Комплекс этилендиаминтетрауксусной кислоты (ЭДТА, "трилон Б") с Са 2+

Завершая описание s-металлов, отметим особенности свойств Li и Be , объясняемую расположением этих элементов в верхней части I и II групп, соответственно, Периодической системы:

1) высокие по сравнению с другими членами групп энергии ионизации. Это объясняет ковалентный, а не ионный характер образуемых этими элементами соединений;

2) меньшие, чем у других членов групп, радиусы ионов, обусловливающие:

а) высокую плотность заряда, следовательно, повышенную поляризующую способность, что проявляется в увеличенной ковалентности их соединений;

б) повышенные энергии решетки соединений этих элементов, объясняющие их пониженную растворимость;

3) меньшую электроположительность по сравнению с другими членами групп. Однако Li обладает высоким окислительно-восстановительным потенциалом, обусловленным большей энергией гидратации.

Для биохимии и медицины существенно, что свойства Li и его соединений во многом сходны со свойствами Mg и его соединений. Известно, что Mg 2+ играет в обмене веществ в живом организме очень большую роль, активируя АТФ и многие важные ферменты.

Подобное диагональное соотношение между элементами в периодической таблице отмечено также для пары Be и Al с их соединениями, хотя Be (II группа) по электронной конфигурации относится к s-элементам, а Аl (III группа) — к р-элементам. Кроме того, диагональное соотношение описано для пары В — Si и для ионов Na + — Са 2+ — Y 3+ .

Биологическая роль s-элементов очень велика. Ионы Na + , К + , Са 2+ , Mg 2+ , Cl - и НС О 3 - содержатся во всех биологических жидкостях. В частности, Na + и Сl - в большом количестве содержатся в плазме крови и обеспечивают ее осмотическое давление. В нервных клетках резкие изменения концентрации ионов Na + и К + вызывают электрические импульсы, обеспечивающие передачу сигналов в нервной системе.

В плазмалемме нервных клеток действует натриевый насос, обеспечивающий высокую концентрацию ионов К + внутри нервных клеток, и ионов Na + — в межклеточной жидкости. Когда ионы К + диффундируют за пределы клетки, на ее плазмалемме возникает разность потенциалов, обусловленная избытком внутри клетки ионов Сl - , имеющих отрицательный заряд. После стимулирования клетки через плазмалемму начинают проходить ионы Na + , в результате чего знак разности потенциалов изменяется на противоположный. После этого начинает распространяться электрический импульс.

Одним из проявлений гомеостаза считается также то, что хлорид натрия входит в состав потовой жидкости, выделение которой помогает охлаждать организм.

Медицинская бионеорганика. Г.К. Барашков

4.D, L -Система обозначения стереоизомеров.

В ряде случаев предпочитают пользоваться не R,S -системой обозначения абсолютной конфигурации, а другой, D,L -системой. Выбор D или L обоpyачения изомера основан на определенном расположении регерной группы в проекции Фишера. D , L -Номенклатура широко используется в названиях -амино, -гидроксикислот и углеводов.

По этой системе L -конфигурация приписывается стереозомеру, у которого в проекций Фишера реперная группа находится слева от вертикальной линии (от лат. "laevus" -левый). Соответственно, если реперная группа расположена в проекции Фишера справа, стереоизомер имеет D - конфигурацию (от лат. "dexter" - правый):

Конечно, надо помнить, что в проекции Фишера вверху располагает наиболее окисленный атом углерода (то есть, группу СООН в амино- и гидроксилкслотах и группу СН=О в углеводах).

Амино и гидроксикислоты

В -амино- и -гидроксикислотах реперными группами служат, соответственно, группы NH 2 и ОН:

Если в амино- или гидроксикислоте есть несколько амино- или гидрокси-групп, то указывают их взаимное расположение, пользуясь приставками "эритро", "трео" и.п. Отнесение кислоты к D- или L-ряду при этом определяет NH 2 или ОН-группа, находящаяся в - положении к СООН-группе, расположенной вверху в проекции Фишера:

В этом случае буквы D и L, указывающие положение реперной группы, снабжены индексом "S". Это делается во избежание путаницы. Индекс "S" подчеркивает, что указана конфигурация именно верхнего хирального центра, находящегося относительно карбоксильной группы в - положении, как и в аминокислоте серине ("S" - от слова "serine").

Для гидроксикислот с несколькими ОН-группами, а также аминогидроксикислот используют и альтернативный вариант обозначения конфигурации, в котором реперной группой является самая нижняя в проекции Фишера НО- группа. При этом конфигурационные дескрипторы D и L снабжаются подстрочным индексом "g" (от "glyceric aldehyde"). В этом случае изображенные на рис.123 и 124 аминокислоты получают названия: D g -треонин ( L s - треонин) и L g -треонин ( D s -треонин).

Углеводы .

В углеводах реперной группой является самая нижняя в проекции Фишера гидроксильная группа, связанная с аиммтрическим атомом углерода

Очевидно, что в случае молекул с одним асимметрическим атомом D,L -номенклатура, как и R,S -номенклатура однозначно говорит об абсолютной конфигурации центра хиральности. То же самое относится к применению D,L -наименования стереоизомеров с несколькими асимметрическими атомами, поскольку в этом случае конфигурация остальных центров хиральности задается приставками эритро-, трео-, рибо-, ликсо- и т.п. Так, если мы скажем "треоза", то зададим только относительную конфигурацию асимметрических атомов в молекуле. Тогда будет неясно, о каком именно энантиомере идет речь: (26) или (27), Если же мы скажем "D-треоза", то однозначно укажем, что имеется в виду изомер (26), поскольку в нем реперная группа ОН расположена справа в проекции Фишера:

Таким образом, название "D-треоза" (как и "L-треоза") говорит об абсолютной конфигурации обоих асимметрических атомов в молекуле.
Как и R,S -номенклатура, D,L-система обозначения стереоизомеров не связана со знаком оптического вращения.
Следует отметить, что ранее для обозначения направления вращения плоскости поляризации света использовались строчные буквы d (вправо) и l (влево). Не следует путать применение этих букв с использованием прописных букв D и L для обозначения конфигурации молекул. В настоящее время направление вращения плоскости поляризации света принято обозначать символами (+) и (-).

5.Хиральные молекулы без асимметрических атомов

В предыдущих разделах были рассмотрены молекулы, хиральность которых обусловлена определенным npocтранственным расположением четырех разных атомов или групп атомов относительно некоторого центра, называемого центром хиральности.

Возможны случаи, когда подобных центров в молекуле нет, но тем не менее молекула хиральна, поскольку в ней отсутствуют элементы симметрии группы S n . В таких случаях энантиомеры различаются расположением атомов относительно некоторой оси или плоскости, которые называют осью хиральности или плоскостью хиральностию. Ось хиральности встречается, например, в молекулах кумуленов.
Строение молекулы простейшего кумулена - аллена - такого, что два его фрагмента СН 2 находятся в двух взаимно перлендикулярных плоскостях:

Молекула аллена ахиральна: в ней есть две плоскости симметрии (показаны на рисунке). Ахиральны также молекулы бутадиена-1,2 и 3-метил-бутадиена-1,2

Если же мы рассмотрим молекулу пентадиена-2,3, то увидим, что в ней нет плоскостей симметрии (как нет и других элементов симметрии группы Sn). Этот диен существует в виде пары энантиомеров:

Хиральность молекул (28) и (29) обусловлена определенным простарственным расположением заместителей относительно оси (показана на рисунке), проходящей через атомы углерода, связанные двойными связями. Эту ось называют осью хиральности . О молекулах, подобных (28) и (29) говорят, что они обладают осевой хиральностью.

Оси хиральности имеются и в молекулах некоторых других соединений, например, спиросоединениях (спиранах):

Упомянутые антропоизомеры орто-дизамещенных бифенилов также представляют собой молекулы с осевой хиральностью.Примерами молекул с плоскостью хиральности могут служить молекулы пара-циклофанов:

Изображенные здесь энантиомеры не могут превратиться друг в друга за счет поворота вокруг -связей в силу пространственых требованй входящих в состав этих молекул фрагментов.

Для обозначения конфигурации молекул с осевой и плоскостной хиральностью можно использовать R,S-номенклатуру. Интересующиеся могут найти описание принципов отнесения конфигурации к R или S для таких молекул в издании ВИНИТИ: Hoмeнклатурные правила ИЮПАК по химии, т.3, полутом2, М., 1983.

6.К правилу последовательности в R,S - номенклатуре.

В ряде случаев при определении порядка старшинства заместителей встречаются осложнения.Рассмотрим некоторые из них.

Пример 1.

Очевидно, что в данном случае младшими заместителями при асимметрическом атоме углерода, отмеченном звездочкой, являются Н (d) и СН 3 (с). Рассмотрим два оставшихся сложных заместителя, расположив в них атомы по слоям.

В первом слое обоих заместителей атомы одинаковы. Во втором слое набор атомов также одинаков. (Н,С,О). Поэтому нам необходимо обратиться к третьему слою атомов. При этом в левом и правом заместителях следует в первую очередь сравнивать атомы Ш слоя, связанные со старшими атомами II- слоя (то есть рассматривать "старшие ветви " обоих заместителей). В данном случае речь идет об атома, связанных с атомом кислорода П слоя. Поскольку в правом заместителе с атомом кислорода связан атом С, а в левом - атом Н, правый заместитель получает преимущество в сташинстве:

Соединению следует приписать R-конфигурацию:

Если бы атомы "старшей ветви" в третьем слое оказались одинаковы, например, оба С, то надо было бы сравнивать атомы того же III слоя, но уже в младшей ветви. Тогда подучил бы преимущество левый заместитель. Однако, мы не достигаем этого пункта в наших сравнениях, так как можем сделать выбор уже на основании различия атомов Ш слоя старшей ветви.

Совершенно аналогично выбор порядка старшинства осуществляется, например, между такими заместителями:

Пример 2.
Может встретиться ситуация, когда для выбора старшего заместителя необходимо "пройди" через кратную связь. В таком случае прибегают к помощи так называемых фантомных атомов, имеющих нулевой атомный номер (то есть априорно самых младших) и валентность, равную 1.

В этом примере примере надр сделать выбор между левым и правим углеродсодержащими заместителями. Рассмотрим их, предварительно "раскрыв" двойную С=С связь первого заместителя. При этом появятся дублированнве атомы (выделены кружками). К дубликатам атомов присоединим фантомные атосмы (обозначим их буквой ф) так, чтобы довести валентность каждого до 4:

Теперь мы можем провести сравнение левого и правого заместителей:

Различие в третьем слое атомов позволяет отдать предпочтение в старшинстве правому заместителю:

Следовательно, соединение имеет R-конфигурацию.

Пример 3. В ряде случаев два заместителя при асимметрическом атоме структурно одинаковы, но различаются лишь абсолютной конфигурацией хиральных центров. Тогда принимают, что-R-конфигурация старше S-конфигурации . В соответствии с этим, центральному атому углерода в приведенном ниже примере следует приписать S-конфигурацию:

Пример 4 . Изложенные выше принципы применимы также для описания абсолютной конфигурации асимметрических атомов с тремя заместителями (атомы азота, фосфора, серы). При этом в качестве четвертого заместителя используют фантомный атом, который всегда является самым младшим (в роли фантомного атома можно рассматривать неподеленную пapy электронов):

Пример 5. Иногда для выбора старшинства заместителей приходится "раскрывать" цикл, подобно тому, как производят "раскрытие" кратной связи.

В данном случае легко определить самый старший (О) и самый младший (Н) заместители при атоме углерода, отмеченном звездочкой. Для того, чтобы сделать выбор между атомами углерода 1 Си 2 С, следует "раскрыть" цикл по связи 2 С- О согласно следующей схеме (дубликаты атомов выделены кружками):

В этом случае, в отличие от "раскрытия" кратных связей, дублированные атомы уже не представляют собой "тупиковые" ветви, а находят продолжение в повторении атома, отмеченного звездочкой. То есть, процедура "раскрытия" цикла заканчивается тогда, когда на концах обеих ветвей оказывается один и тот же атом (вернее, его дубликат). Теперь мы можем сравнить атомы 1 Си 2 С, рассмотрев соответствующие слои атомов:

Различие в третьем слое позволяет отдать преимущество в старшинстве - атому углерода 2 С. Следовательно, рассматриваемый центр хиралъноети имеет S-конфигурацию:

1.Э.Илиел, Основы стереохимии. М.: Мир, 1971, 107 с,
2.В.М.Потапов, Стереохимия. М.: Химия, 1988, 463 с.
3.В.И.Соколов, Введение в теоретическую стереохимию, М., Наука, 1979, 243 с.

Понятие хиральности – одно из важнейших в современной стереохимии.Модель является хиральной, если она не обладает никакими элементами симметрии (плоскостью, центром, зеркально-поворотными осями), кроме простых осей вращения. Мы называем молекулу, которая описывается такой моделью, хиральной (что означает «подобная руке», от греч. хиро – рука) по той причине, что, как и руки, молекулы не совместимы со своими зеркальными отображениями.На рис. 1 приведен ряд простых хиральных молекул. Совершенно очевидны два факта: во-первых, пары приве­денных молекул представляют зеркальные отражения друг дру­га, во-вторых, эти зеркальные отражения нельзя совместить друг с другом. Можно заметить, что в каждом случае молекула содержит углеродный атом с четырьмя различными заместителями. Такие атомы называют асимметрически­ми. Асимметрический атом углерода является хиральным или стереогенным центром. Это наиболее распространенный тип хиральности. Если молекула хиральна, то она может существовать в двух изомерных формах, связанных как предмет и его зеркальное отражение и несовместимых в пространстве. Такие изомеры (пара) называются энантиомерами .

Термин «хиральный» не допускает вольного толкования. Когда хиральной является молекула, то она, по аналогии с рукой, должна быть либо левой, либо правой. Когда же мы называем хиральным вещество или некоторый его образец, то это просто обозначает, что оно (он) состоит из хиральных молекул; при этом вовсе не обязательно, что все молекулы одинаковы с точки зрения хиральности (левые или правые, R или S , см. раздел 1.3). Можно выделить два предельных случая. В первом образец состоит из одинаковых с точки зрения хиральности молекул (гомохиральных, только R или только S ); такой образец называют энантиомерно чистым . Во-втором (противоположном) случае образец состоит из одинакового числа разных с точки зрения хиральности молекул (гетерохиральных, мольное соотношение R : S =1:1); такой образец тоже хиральный, но рацемический . Есть и промежуточный случай – неэквимолярная смесь энантиомеров. Такую смесь называют скалемической или нерацемической. Таким образом, утверждение, что макроскопический образец (в отличие от индивидуальной молекулы) хирален, следует считать не вполне ясным и поэтому в некоторых случаях недостаточным. Может потребоваться дополнительное указание, является ли образец рацемическим или нерацемическим. Отсутствие точности в понимании этого ведет к определенного рода заблуждениям, например, в заголовках статей, когда провозглашается синтез некоторого хирального соединения, но остается непонятным, желает ли автор просто привлечь внимание к самому факту хиральности обсуждаемой в статье структуры, либо продукт действительно был получен в виде единственного энантиомера (т.е. ансамбля гомохиральных молекул; этот ансамбль, впрочем, не стоит называть гомохиральным образцом). Таким образом, в случае хирального нерацемического образца правильнее говорить «энантиомерно обогащенный» или «энантиомерно чистый» .

      Способы изображения оптических изомеров

Способ изображения выбирается автором исключительно из соображений удобства передачи информации. На рисунке 1 изображения энантиомеров даны с помощью перспективных картинок. При этом принято связи, лежащие в плоскости изображения, рисовать сплошной линией; связи, уходящие за плоскость, - пунктиром; а связи, направленные к наблюдателю, - жирной линией. Такой способ изображения вполне информативен для структур с одним хиральным центром. Эти же молекулы можно изобразить в виде проекции Фишера. Данный способ был предложен Э.Фишером для более сложных структур (в частности, углеводов), имеющих два и более хиральных центра.

Зеркальная плоскость

Рис. 1

Для построения проекционных формул Фишера тетраэдр поворачивают так, чтобы две связи, лежащие в горизонтальной плоскости, были направлены к наблюдателю, а две связи, лежащие в вертикальной плоскости, - от наблюдателя. На плоскость изображения попадает только асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены примеры различных способов изображения одной и той же структуры с определенной конфигурацией (рис. 2)

Проекция Фишера

Рис. 2

Приведем несколько примеров проекционных формул Фишера (рис.3)

(+)-(L )-аланин(-)-2-бутанол (+)-(D )-глицериновый альдегид

Рис. 3

Поскольку на тетраэдр можно смотреть с разных сторон, то каждый стереоизомер может быть изображен двенадцатью (!) различными проекционными формулами. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную (номенклатурную) функцию, если она находится в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулу нельзя выводить из плоскости чертежа и нельзя поворачивать на 90 о, хотя можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла (рис. 4)

Рис. 4

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы (рис.5)

Рис. 5

3. Одна (или любое нечетное число) перестановка заместителей у асимметрического центра приводит к формуле оптического антипода (рис.6)

Рис. 6

4. Поворот в плоскости чертежа на 90 0 превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом (рис.7)

Рис. 7

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее (рис.8); четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

Рис. 8

Проекции Фишера нельзя применять к молекулам, хиральность которых связана не с хиральным центром, а с другими элементами (осью, плоскостью). В этих случаях необходимы трехмерные изображения.

      D , L - Номенклатура Фишера

Одну проблему мы обсудили – как изобразить трехмерную структуру на плоскости. Выбор способа диктуется исключительно удобством представления и восприятия стреоинформации. Следующая проблема связана с составлением названия для каждого индивидуального стереоизомера. В названии должна быть отражена информация о конфигурации стереогенного центра. Исторически первой номенклатурой для оптических изомеров была D , L - номенклатура, предложенная Фишером. До 1960–х годов боле привычным было обозначать конфигурацию хиральных центров на основании плоских проекций (Фишера), а не на основании трехмерных 3D – формул, при этом использовались дескрипторы D и L . В настоящее время D , L –система используется ограниченно – главным образом для таких природных соединений, как аминокислоты, оксикислоты и углеводы. Примеры, иллюстрирующие ее применение, показаны на рис.10.

Рис. 10

Для α – аминокислот конфигурация обозначается символом L , если в проекционной формуле Фишера амино –(или аммонийная) группа расположена слева,; символ D используется для противоположного энантиомера. Для сахаров обозначение конфигурации основано на ориентации ОН – группы с высшим номером (самой удаленной от карбонильного конца). Если ОН – группа направлена вправо, то это – конфигурация D ; если ОН слева – конфигурация L .

Система Фишера в свое время позволила создать логичную и непротиворечивую стереохимическую систематику большого числа природных соединений, ведущих свое происхождение от аминокислот и сахаров. Однако ограничения Фишеровской системы, а также тот факт, что в 1951 г. появился рентгеноструктурный метод определения истинного расположения групп вокруг хирального центра, привели к созданию в 1966 г. новой, более строгой и непротиворечивой системы описания стереоизомеров, известной под названием R , S - номенклатуры Кана-Ингольда-Прелога (КИП). В системе КИП к обычному химическому названию прибавляются специальные дескрипторы R или S (в тексте выделяются курсивом), строго и однозначно определяющие абсолютную конфигурацию.

      Номенклатура Кана-Ингольда-Прелога

Для того,чтобы определить дескриптор R или S для данного хирального центра, используется так называемое правило хиральности. Рассмотрим четыре заместителя, связанные с хиральным центром. Их следует расположить в единообразной последовательности стереохимического старшинства; для удобства давайте обозначим эти заместители символами А, В, D и Е и условимся считать, что в общей последовательности старшинства (иначе говоря, по приори­тету) А старше В, В старше D, D старше E(A>B>D>E). Правило хиральности КИП требует, чтобы модель рассматривалась со стороны, противоположной той, которую занимает заместитель Е с низшим приоритетом или стереохимически младший заместитель (рис.11). Тогда остальные три заместителя образуют нечто вроде треножника, ножки которого направлены на зрителя.

Рис. 11

Если падение старшинства заместителей в ряду A>B>D осуществляется по часовой стрелке (как на рис 11), то центру присваивается конфигурационный дескриптор R ( от латинского слова rectus - правый). При другом расположении, когда стереохимическое старшинство заместителей падает против часовой стрелки, центру присваивается конфигурационный дескриптор S (от латинского sinister - левый).

При изображении соединений с помощью Фишеровских про­екций можно легко определить конфигурацию без построения пространственных моделей. Формулу надо записать так, чтобы младший заместитель находился внизу или вверху, так как по правилам представления проекций Фишера вертикальные связи направлены от наблюдателя (рис.12). Если при этом остальные заместители в порядке уменьшения старшинства располагаются по часовой стрелке, соединение относят к (R )-ряду, а если про­тив часовой стрелки, то к (S )-ряду, например:

Рис. 12

Если младшая группа не находится на вертикальных связях, то следует поменять ее местами с нижней группой, но следует помнить, что при этом происходит обращение конфигурации. Можно сделать две любые перестановки – при этом конфигурация не изменится.

Таким образом, определяющим является стереохимическое старшинство . Обсудим теперь правила последовательности старшинства , т.е. правила, по которым группы А,В,D и Е располагают в порядке приоритета.

    Предпочтение по старшинству отдается атомам с большим атомным номером. Если номера одинаковы (в случае изотопов), то более старшим становится атом с наибольшей атомной массой (например, D>Н). Самый младший «заместитель» - неподеленная электронная пара (например, у азота). Таким образом, старшинство возрастает в ряду: не­поделенная пара

Рассмотрим простой пример: в бромхлорфторметане CHBrCIF (рис.13) имеется один стереогенный центр, и два энантиомера можно раз­личить следующим образом. Сначала ранжируют заместители по их стереохимическому старшинству: чем больше атомный но­мер, тем старше заместитель. Поэтому в данном примере Br > С1 > F > Н, где «>» обозначает «более предпочтителен» (или «старше»). Следующий шаг - рассмотреть молекулу со стороны, проти­воположной самому младшему заместителю, в данном случае во­дороду. Видно, что три остальных заместителя расположены в углах треугольника и направлены к наблюдателю. Если старшинство в этой тройке заместителей уменьшает­ся по часовой стрелке, то этот энантиомер обозначают как R . При другом расположении, когда старшинство заместителей падает против часовой стрелки, энантиомер обозначают как S . Обозначения R и S пишут курсивом и помещают в скобках перед названием структуры. Таким образом, два рассмотренных энантиомера имеют названия (S )-бромхлорфторметан и (R )-бромхлорфторметан.

Рис. 13

2. Если с асимметрическим атомом непосредственно связаны два, три или все четыре одинаковых атома, старшинство устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство.

Рис. 14

Например, в молекуле 2-бром-3-метил-1-бутанола (рис.14) по первому поясу легко определяется самый старший и самый младший заместители – это бром и водород соответственно. Но по первому атому групп СН 2 ОН и СН(СН 3) 2 установить старшинство не удается, так как в обоих случаях это атом углерода. Для того чтобы определить, какая из групп старше, снова применяют правило последовательности, но теперь рассматривают атомы следующего пояса. Сравнивают два набора атомов (две тройки), записанных в порядке падения старшинства. Старшинство теперь определяют по первой точке, где обнаруживается различие. Группа С Н 2 ОН – кислород, водород, водород С (О НН) или в цифрах 6(8 11). Группа С Н(СН 3) 2 – углерод, углерод, водород С (С СН) или 6(6 61). Первая точка различия подчеркнута: кислород старше углерода (по атомному номеру), поэтому группа СН 2 ОН старше СН(СН 3) 2 . Теперь можно обозначить конфигурацию энантиомера, изображенного на рисунке 14 как (R ).

Если и такая процедура не привела к построению однозначной иерархии, ее продолжают на все более возрастающих расстояни­ях от центрального атома, пока, наконец, не встретятся разли­чия, и все четыре заместителя получат свое старшинство. При этом любое предпочтение, приобретаемое тем или иным заместителем на одной из стадий согласования старшинства, считается окончательным и на последующих стадиях переоценке не подле­жит.

3. Если в молекуле встречаются точки разветвления, процедуру установления старшинства атомов следует продолжать вдоль молекулярной цепи наибольшего старшинства. Предположим, следует определить последовательность старшинства двух заместителей, изображенных на рис.15. Очевидно, что решение не будет достигнуто ни в первом (С), ни во втором (С,С,Н) ни в третьем (С,Н,F,С,Н,Br) слоях. В этом случае придется переходить в четвертый слой, но сделать это следует по пути, преимущество которого установлено в третьем слое (Br >F). Следовательно, решение о приоритете заместителя В над заместителем А делается на основании того, что в четвертом слое Br >CI для той ветви, переход на которую диктуется старшинством в третьем слое, а не на основании того, что наибольшим атомным номером в четвертом слое обладает атом I (который находится на менее предпочтительной и поэтому не исследуемой ветви).

Рис. 15

4. Кратные связи представляются как сумма соответствующих простых связей. В соответствии с этим правилом каждому атому, связанному кратной связью, ставится в соответствие дополнительный «фантомный» атом (или атомы) того же сорта, расположенный на другом конце кратной связи. Комплементарные (дополнительные или фантомные) атомы заключаются в скобки, и считается, что они не несут никаких заместителей в следующем слое.В каче­стве примера рассмотрим представления следующих групп (рис.16).

Группа Представление

Рис. 16

5. Искусственное увеличение числа заместителей требуется и тогда, когда заместитель (лиганд) является бидентатным (или три-, или тетрадентатным),а также когда заместитель содержит циклический или бициклический фрагмент. В таких случаях каждая ветвь циклической структуры рассекается после точки ветвления [где она раздваивается сама по себе], и атом, являющий точкой ветвления, помещается (в скобках) в конце цепи, возникшей в результате рассечения. На рис.17 на примере производного тетрагидрофурана (ТГФ) рассмотрен случай бидентатного (циклического) заместителя. Две ветви пятичленного кольца (по отдельности) рассекаются по связям с хиральным атомом, который после этого добавляется к концу каждой из двух вновь образованных цепей. Видно, что в результате рассечения А получается гипотетический заместитель –СН 2 ОСН 2 СН 2 -(С), который оказывается старше, чем реальный ациклический заместитель -СН 2 ОСН 2 СН 3 по причине преимущества фантомного (С) на конце первого заместителя. Напротив, образованный в результате рассечения В гипотетический лиганд –СН 2 СН 2 ОСН 2 –(С) по старшинству оказывается ниже реального заместителя –СН 2 СН 2 ОСН 2 СН 3 , поскольку у последнего к концевому углероду присоединены три атома водорода, а у первого в этом слое нет ни одного. Следовательно, с учетом установленного порядка старшинства заместителей, конфигурационным символом для данного энантиомера оказывается S .

Определяют старшинство

Заместитель А

В >A

Заместитель А

Рис.17

Рис. 18

Сходный случай рассечения циклического заместителя поясняется на примере соединения на рис. 18 , где структура В иллюстрирует трактовку циклогексильного кольца (в структуре А ). В этом случае правильной последовательностью старшинства является ди-н -гесилметил > циклогексил > ди-н -пентилметил > Н.

Теперь мы достаточно подготовлены, чтобы рассмотреть такой заместитель, как фенил (рис.19 структура А ). Схему раскрытия каждой кратной связи мы обсудили выше. Поскольку (в любой структуре Кекуле) каждый из шести атомов углерода связан двойной связью с другим атомом углерода, то (в системе КИП) каждый углеродный атом кольца несет в качестве «заместителя» дополнительный углерод. Дополненное таким образом кольцо (рис.19, структура В ) затем раскрывается по правилам для циклических систем. В результате рассечение описывается схемой, изображенной на рис.19, структура С .

Рис. 19

6. Теперь мы рассмотрим хиральные соединения, в которых различия между заместителями носят не материальный или конституционный характер, а сводятся к различиям в конфигурации. Соединения, содержащие более одного хирального центра, будут рассмотрены ниже (см. раздел 1.4) Здесь же мы коснемся заместителей, которые отличаются цис– транс – изомерией (олефинового типа). Согласно Прелогу и Хельмхену, олефиновый лиганд, в котором старший заместитель, расположен по ту же сторону от двойной связи олефина, что и хиральный центр, обладает преимуществом над лигандом, в котором старший заместитель оказывается в транс –положении к хиральному центру. Это положение не имеет отношения ни к классической цис–транс- , ни к E –Z–номенклатуре для конфигурации двойной связи. Примеры изображены на рис.20.

Рис. 20

      Соединения с несколькими хиральными центрами

Если в молекуле имеются два хиральных центра, то, поскольку каждый центр может иметь (R )- или (S )-конфигурацию, возможно существование четырех изомеров - RR , SS , RS и SR :

Рис. 21

Поскольку молекула имеет только одно зеркальное отображение, энантиомером соединения (RR ) может быть только изомер (SS ). Аналогично другую пару энантиомеров образуют изомеры (RS ) и (SR ). Если меняется конфигурация лишь одного асимметрическо­го центра, то такие изомеры называются диастереомерами. Диастереомеры - это стереоизомеры, не являющиеся энантиомерами. Так, диастереомерны пары (RR )/(RS ), (RR )/(SR ), (SS )/(RS ) и (SS )/(SR ). Хотя в общем случае при сочетании двух хиральных центров образуются четыре изомера, сочетание центров одинакового хи­мического строения дает лишь три изомера: (RR ) и (SS ), являю­щиеся энантиомерами, и (RS ), находящийся в диастереомерном отношении к обоим энантиомерам (RR ) и (SS ). Типичным при­мером является винная кислота (рис.22), которая имеет только три изо­мера: пару энантиомеров и мезо-форму .

Рис. 22

мезо-Винная кислота является (R , S )-изомером, который оптически неактивен, поскольку объединение двух зеркально-симметричных фраг­ментов приводит к появлению плоскости симметрии (а). мезо-Винная кислота представляет собой пример ахирального соеди­нения мезо-конфигурации, которое построено из равного числа одинаковых по структуре, но разных по абсолютной конфигура­ции хиральных элементов.

Если в молекуле имеется п хиральных центров, максималь­ное число стереоизомеров можно рассчитать по формуле 2 n ; правда, иногда число изомеров будет меньше благодаря нали­чию мезо-форм.

Для наименований стереоизомеров молекул, содержащих два асимметрических атома углерода, два заместителя при каждом из которых одинаковы, а третьи отличаются, часто используют пре­фиксы эритро- и трео - от названий сахаров эритрозы и треозы. Эти префиксы характеризуют систему в целом, а не каждый хиральный центр в отдельности. При изображении та­ких соединений с помощью проекций Фишера в паре эритро- изомеров одинаковые группы располагаются с одной стороны, и если бы разные группы (С1 и Вг в приведенном ниже приме­ре) были одинаковы, получилась бы мезо-форма. В паре трео- изомеров одинаковые группы располагаются с разных сторон, и если бы разные группы были одинаковы, новая пара осталась бы энантиомерной парой.

Рис. 23

Все рассмотренныевыше примерысоединений имеют центр хиральности. Таким центром является асимметрический атом углерода. Однако, центром хиральности могут быть и другие атомы (кремния, фосфора, серы), как, например, в метилнафтилфенилсилане, о-анизилметилфенилфосфине, метил-п-толилсульфоксиде (рис. 24)

Рис. 24

      Хиральность молекул, лишенных хиральных центров

Необходимым и достаточным условием хиральности молекулы является ее несовместимость со своим зеркальным изображением. Наличие единственного (конфигурационно устойчивого) хирального центра в молекуле является достаточным, но вовсе не необходимым условием существования хиральности. Рассмотрим хиральные молекулы, лишенные хиральных центров. Некоторые примеры приведены нарисунках 25 и 26.

Рис. 25

Рис. 26

Это соединения с осями хиральности (аксиальный тип хиральности ): аллены; алкилиденциклоалканы; спираны; так называемые атропоизомеры (бифенилы и похожие соединения, хиральность которых возникает благодаря затрудненному вращению вокруг простой связи). Другой элемент хиральности – плоскость хиральности (планарный тип хиральности ). Примерами таких соединений являются анса-соединения (в которых алициклическое кольцо слишком мало, чтобы ароматическое кольцо могло через него провернуться); парациклофаны; металлоцены. Наконец хиральность молекулы может быть связана со спиральной организацией молекулярной структуры. Молекула может заворачиваться либо в левую, либо в правую спираль. В этом случае говорят о спиральности (спиральный тип хиральности).

Для того чтобы определить конфигурацию молекулы, обладающей осью хиральности, необходимо ввести дополнительный пункт в правило последовательности: ближайшие к наблюдателю группы считаются старше удаленных от наблюдателя групп. Это дополнение необходимо сделать, так как для молекул с аксиальной хиральностью допустимо наличие одинаковых заместителей на противоположных концах оси. Применение этого правила к молекулам, изображенным на рис. 25, показано на рис. 27.

Рис. 27

Во всех случаях молекулы рассматриваются вдоль хиральной оси слева. При этом следует понимать, что если молекулы рассматриваются справа, то конфигурационный дескриптор останется тем же. Таким образом, пространственное расположение четырех опорных групп соответствует вершинам виртуального тетраэдра и может быть представлено с помощью соответствующих проекций (рис.27). Для определения соответствующего дескриптора пользуемся стандартными правилами R , S -номенклатуры. В случае бифенилов важно заметить, что заместители в кольце рассматриваются, начиная от центра (через который проходит ось хиральности) к перифирии, в нарушении стандартных правил последовательности. Так, для бифенила на рис. 25 правильная последовательность заместителей в правом кольце С-ОСН 3 >С-Н; атом хлора слишком удален, чтобы принимать его во внимание. Опорные атомы (те, по которым определяют конфигурационный символ) оказываются теми же самыми, если молекулу рассматривать справа. Иногда, чтобы отличить аксиальную хиральность от других типов, используют дескрипторы aR и aS (или R a и S a ), однако использование префикса «a » не носит обязательного характера.

Альтернативно, молекулы с осями хиральности можно рассматривать как спиральные, и их конфигурацию можно обозначать символами Р и М . При этом для определения конфигурации рассматриваются только заместители с высшим приоритетом как в передней, так и задней (удаленной от наблюдателя) части структуры (заместители 1 и 3 на рис.27). Если переход от переднего заместителя 1 с высшим приоритетом к приоритетному заднему заместителю 3 осуществляется по часовой стрелке, то это конфигурация Р ; если против часовой стрелки, - это конфигурация М .

На рис. 26 показаны молекулы с плоскостями хиральности . Дать определение плоскости хиральности не так легко, и оно не столь однозначно, как определение центра и оси хиральности. Это плоскость, которая содержит как можно больше атомов молекулы, но при этом не все. Фактически хиральность потому (и только потому), что по крайней мере один заместитель (чаще больше) не лежит в плоскости хиральности. Так, хиральной плоскостью анса-соединения А является плоскость бензольного кольца. В парациклофане В в качестве хиральной плоскости рассматривается наиболее замещенное (нижнее) кольцо. Для того чтобы определить дескриптор для планарно-хиральных молекул, на плоскость смотрят со стороны ближайшего к плоскости, но не лежащего в этой плоскости атома (если имеется два или более кандидата, то выбирается тот, который находится ближе к атому с высшим приоритетом согласно правилам последовательности). Этот атом, иногда называемый пробным или пилотным атомом, на рис.26 отмечен стрелкой. Тогда, если три последовательных атома (a, b, c) c наивысшим приоритетом образуют в хиральной плоскости ломаную линию, изгибающуюся по часовой стрелке, то конфигурация соединения pR (или R p ), а если ломаная линия изгибается против часовой стрелки, то дескриптор конфигурации pS (или S p ). Планарная хиральность, подобно аксиальной хиральности, может альтернативно рассматриваться как разновидность хиральности. Для того чтобы определить направление (конфигурацию) спирали, нужно рассматривать пилотный атом вместе с атомами a,b и c, как они определены выше. Отсюда видно, что pR -соединениям соответствует Р-, а pS - соединениям – М –спиральность.

Для определения абсолютной конфигурации хирального центра необходимо выполнить следующие операции:

1. Расположить хиральный центр так, чтобы луч зрения был направлен от хирального углерода к младшему заместителю.

2. В полученной проекции три оставшихся заместителя будут расположены под углом 120 o .Если убывание старшинства заместителей происходит по часовой стрелке - это R -конфигурация (предполагается следующие изменение старшинства: A > D > B):

если против часовой стрелки - S -конфигурация:

Определить абсолютную конфигурацию можно по формуле Фишера. Для этого действиями, не меняющими формулу Фишера младший заместитель помещают вниз. После этого рассматривают изменение старшинства трех оставшихся заместителей. Если убывание старшинства заместителей происходит по часовой стрелке - это R-конфигурация, если против - S-конфигурация. Младший заместитель при этом не принимается во внимание.

Пример

Рассмотрим определение конфигурации хиральных центров на примере 3-бром-2-метил-2-хлорбутанола-1, имеющего следующее строение:

Определим абсолютную конфигурацию С 2 . Для этого представим С 3 и С 4 , а также все, что с ними связано в виде радикала A :

Теперь исходная формула будет выглядеть так:

Определяем старшинство заместителей (от старшего к младшему): Сl > А > СН 2 ОН > СН 3 . Делаем четное число перестановок (это не меняет стереохимического смысла формулы!) таким образом, чтобы младший заместитель оказался внизу:

Теперь рассмотрим три верхних в формуле Фишера заместителя у хирального центра С 2:

Видно, что обход этих заместителей по убыванию старшинства происходит против часовой стрелки, следовательно конфигурация этого хирального центра – S.

Аналогичные действия проделаем и для другого хирального центра, связанного с С 3 . Снова представим, на этот раз С 2 и все, что с ним связано, в виде радикала В :

Теперь исходная формула станет выглядеть так:

Опять определяем старшинство заместителей (от старшего к младшему): Br > B > СН 3 > H. Делаем четное число перестановок так, чтобы младший заместитель опять оказался внизу:

Определим, в каком направлении происходит убывание старшинства (нижний, самый младший заместитель не принимаем во внимание!):

Убывание старшинства заместителей происходит происходит против часовой стрелки, следовательно конфигурация и этого хирального центра – S.

Название исходного вещества с учетом абсолютной конфигурации хиральных центров - 3-/S/-бром-2-/S/-метил-2-хлорбутанол-1

Поделиться