Получение дисперсных систем. Метод получения дисперсных систем-диспергирование. Список использованной литературы

Методы получения коллоидных растворов также можно разделить на две группы: методы конденсации и диспергирования (в отдельную группу выделяется метод пептизации , который будет рассмотрен позднее). Еще одним необходимым для получения золей условием, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов - веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Рис. Классификация способов получения дисперсных систем (в скобках указан вид систем)

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука .

Диспергирование может быть самопроизвольное и несамопроизвольное. Самопроизвольное диспергирование характерно для лиофильных систем и связано с ростом беспорядка системы (когда из одного большого куска образуется много мелких частиц). При диспергировании при постоянной температуре рост энтропии должен превышать изменение энтальпии.

ΔН > TΔS; ΔG > 0.

Процесс диспергирования в этом случае является типично несамопроизвольным и осуществляется за счет внешней энергии.

Диспергирование характеризуется степенью диспергирования. Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы. Степень диспергирования можно выразить следующим образом:


α 1 = d н /d к; α 2 = B н /B к; α 3 = V н /V к,

где d н; d к; B н; B к; V н; V к — соответственно диаметр, площадь пoвepxнocти, объем частиц до и после диспергирования.

Таким образом, степень диспергирования может быть выражена в единицах размера (α 1), площади поверхности (α 2) или объема (α 3) частиц дисперсной фазы, т.е. может быть линейной, поверхностной или объемной.

Работа W, необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является необходимой предпосылкой разрушения тела. Согласно П.А. Ребиндеру работа диспергирования определяется по формуле

W = W a + W д = σ*ΔB + кV,

где σ* — величина, пропорциональная или равная поверхностному натяжению на границе раздела между дисперсной фазой и дисперсионной средой; ΔB — увеличение поверхности раздела фаз в результате диспергирования; V — объем исходного тела до диспергирования; к — коэффициент, эквивалентный работе деформирования единицы объема тела.

Методы конденсации

К конденсационным методам получения дисперсных систем относятся конденсация, десублимация и кристаллизация . Они основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация — для жидкой среды.

Необходимым условием конденсации и кристаллизации является пересыщение и неравномерное распределение вещества в дисперсионной среде (флуктуация концентрации), а также образование центров конденсации или зародышей.

Степень пересыщения β для раствора и пара можно выразить следующим образом:

β ж = с/с s , β П = р/р s ,

где р, с — давление пересыщенного пара и концентрация вещества в пересыщенном растворе; р s — равновесное давление насыщенного пара над плоской поверхностью; с s — равновесная концентрация, соответствующая образованию новой фазы.

Для осуществления кристаллизации охлаждают раствор или газовую смесь.

В основе конденсационных методов получение дисперсных систем лежат процессы кристаллизации, десублимации и конденсации, которые вызваны уменьшением энергии Гиббса (ΔG < 0) и протекают самопроизвольно.

При зарождении и образовании частиц из пересыщенного раствора или газовой среды изменяется химический потенциал µ, возникает поверхность раздела фаз, которая становится носителем избыточной свободной поверхностной энергии.

Работа, затрачиваемая на образование частиц, определяется поверхностным натяжением σ и равна:

W 1 = 4πr 2 σ,

где 4πr 2 — поверхность сферических частиц радиусом r.

Химический потенциал изменяется следующим образом:

Δμ = μ i // - μ i / < 0; μ i // > μ i / ,

где μ i / и μ i // — химические потенциалы гомо и гетерогенных систем (при переходе от мелких капель к крупным).

Изменение химического потенциала характеризует перенос определенного числа молей вещества из одной фазы в другую; это число n молей равно объему частицы 4πr 3 /3, деленному на мольный объем Vм:

Работа образования новой поверхности в процессе конденсации W к равна:

где W 1 и W 2 — соответственно работа, затрачиваемая на образование поверхности частиц, и работа на перенос вещества из гомогенной среды в гетерогенную.

Образование дисперсных систем может происходить в результате физической и химической конденсации, а также при замене растворителя.

Физическая конденсация осуществляется при понижении температуры газовой среды, содержащей пары различных веществ. При выполнении необходимых условий образуются частицы или капли дисперсной фазы. Подобный процесс имеет место не только в объеме газа, но и на охлажденной твердой поверхности, которую помещают в более теплую газовую среду.

Конденсация определяется разностью химических потенциалов (μ i // - μ i /) < 0, которая изменяется в результате замены растворителя. В отличие от обычной физической конденсации при замене растворителя состав и свойства дисперсионной среды не остаются постоянными. Если спиртовые или ацетоновые растворы серы, фосфора, канифоли и некоторых других органических веществ влить в воду, то раствор становится пересыщенным, происходит конденсация и образуются частицы дисперсной фазы. Метод замены растворителя является одним из немногих, при помощи которых можно получить золи.

При химической конденсации происходит образование вещества с одновременным его пересыщением и конденсацией.

9. Определить изменение изобарно-изотермического потенциала реакции N 2(г) + 2Н 2 О (ж) = NH 4 NO 2 (ж) и дать заключение о направлении ее протекания при стандартных условиях, если для Н 2 О (ж) равна – 237,4 кДж/моль, а для NH 4 NO 2(ж) равна – 115,8 кДж/моль.

Изменение изобарно-изотермического потенциала меньше 0, следовательно, процесс может протекать самопроизвольно в сторону прямой реакции.

14. Определить молекулярность и порядок химической реакции на конкретных примерах.

Молекулярность реакции определяется минимальным числом молекул, одновременно участвующих в элементарном акте данной реакции. Молекулярность и порядок реакции численно совпадают только для простейших реакций. Для сложных процессов эти характеристики реакции будут отличаться (порядок реакции меньше ее молекулярности). Следовательно, формальное понятие о порядке реакции в большинстве случаев не отражает ее сложного механизма, т.е. наличия нескольких промежуточных элементарных реакций (стадий). Однако знание экспериментального порядка реакции позволяет судить о ее предполагаемом механизме путем сопоставления расчетных и экспериментально наблюдаемых значений величины n. Когда порядок реакции, найденный экспериментально, не соответствует числу моль реагентов, участвующих в реакции, то это говорит о том, что реакция не является элементарным процессом, а протекает по сложному механизму. Для сложного механизма скорость суммарной реакции определяется скоростью наиболее медленной стадии многоступенчатого процесса. Таким образом, если реакция протекает в одну стадию, то порядок ее равен молекулярности; если реакция протекает в несколько стадий, то порядок каждой из стадий реакции равен молекулярности только этой стадии. Следовательно, экспериментальное определение порядка реакции может служить методом изучения ее механизма.

Если для осуществления элементарного акта необходима всего одна частица (молекула), то такая реакция называется мономолекулярной.

Для элементарного процесса с одновременным участием двух частиц реакция будет называться бимолекулярной и т.д.

Например:

Реакция мономолекулярна, порядок реакции равен 1/3.

С (т) + Н 2 О (г) СО (г) + Н 2 (г)

Реакция бимолекулярна, порядок реакции равен 2/2= 1.

Реакция тримолекулярна, порядок реакции равен 2/3 (из трех молекул реагирующих веществ получают две молекулы продукта реакции).

29. Изменение свободной энергии, сопровождающее химическую реакцию, ее связь с константой равновесия. Расчет теплового эффекта реакции.

Изменение свободной энергии Гиббса, или изменение изобарно-изотермического потенциала - это та максимальная часть энергии системы, которая в данных условиях может превратиться в полезную работу. При реакция протекает самопроизвольно.

В соответствии с законом действующих масс для произвольной реакции

а A + b B = c C + d D (1)

уравнение скорости прямой реакции можно записать:

, (2)

а для скорости обратной реакции

. (3)

По мере протекания реакции (1.33) слева направо концентрации веществ А и В будут уменьшаться и скорость прямой реакции будет падать. С другой стороны, по мере накопления продуктов реакции C и D скорость реакции справа налево будет расти. Наступает момент, когда скорости υ 1 и υ 2 становятся одинаковыми, концентрации всех веществ остаются неизменными, следовательно,

Откуда K c = k 1 / k 2 = .

Постоянная величина К с, равная отношению констант скоростей прямой и обратной реакций, количественно описывает состояние равновесия через равновесные концентрации исходных веществ и продуктов их взаимодействия (в степени их стехиометрических коэффициентов) и называется константой равновесия. Константа равновесия является постоянной только для данной температуры, т.е. К с = f (Т). Константу равновесия химической реакции принято выражать отношением, в числителе которого стоит произведение равновесных молярных концентраций продуктов реакции, а в знаменателе – произведение концентраций исходных веществ.

Если компоненты реакции представляют собой смесь идеальных газов, то константа равновесия (К р) выражается через парциальные давления компонентов:

K p = . (5)

Из уравнения (6) следует, что К р = К с при условии, если реакция идет без изменения числа моль в газовой фазе, т.е. когда (с + d) = (a + b).

Если реакция (1) протекает самопроизвольно при постоянных Р и Т или V и Т, то значения G и этой реакции можно получить из уравнения:

где Р А, Р В, Р С, Р D – парциальные давления исходных веществ и продуктов реакции.

Уравнение (7) называются уравнениями изотермы химической реакции Вант-Гоффа. Это соотношение позволяет рассчитать значения G и F реакции, определить ее направление при различных концентрациях исходных веществ.

Необходимо отметить, что как для газовых систем, так и для растворов, при участии в реакции твердых тел (т.е. для гетерогенных систем) концентрация твердой фазы не входит в выражение для константы равновесия, поскольку эта концентрация практически постоянна. Так, для реакции

2 СО (г) = СО 2 (г) + С (т)

константа равновесия записывается в виде

Зависимость константы равновесия от температуры (для температуры Т 2 относительно температуры Т 1) выражается следующим уравнением Вант-Гоффа:

, (8)

гдеН 0 – тепловой эффект реакции.

34. Осмос, осмотическое давление. Уравнение Вант-Гоффа и осмотический коэффициент.

Осмос – самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. В качестве полупроницаемой мембраны, через маленькие отверстия которой могут селективно проходить только небольшие по объему молекулы растворителя и задерживаются крупные или сольватированные молекулы или ионы, часто служит целлофановая пленка – для высокомолекулярных веществ, а для низкомолекулярных – пленка из ферроцианида меди. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой ). Для расчета значения  в растворах неэлектролитов используется эмпирическое уравнение Вант-Гоффа:

= C · R · T,

где С – моляльная концентрация вещества, моль/кг;

R – универсальная газовая постоянная, Дж/моль · К.

Величина осмотического давления пропорциональна числу молекул (в общем случае числу частиц) одного или нескольких веществ, растворенных в данном объеме раствора, и не зависит от их природы и природы растворителя. В растворах сильных или слабых электролитов общее число индивидуальных частиц увеличивается вследствие диссоциации молекул, поэтому в уравнение для расчета осмотического давления необходимо вводить соответствующий коэффициент пропорциональности, называемый изотоническим коэффициентом.

i · C · R · T,

где i – изотонический коэффициент, рассчитываемый как отношение суммы чисел ионов и непродиссоциировавших молекул электролита к начальному числу молекул этого вещества.

Так, если степень диссоциации электролита, т.е. отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества, равна  и молекула электролита распадается при этом на n ионов, то изотонический коэффициент рассчитывается следующим образом:

i = 1 + (n – 1) · ,(i > 1).

Для сильных электролитов можно принять  = 1, тогда i = n, и коэффициент i (также больше 1) носит название осмотического коэффициента.

Явление осмоса имеет большое значение для растительных и животных организмов, поскольку оболочки их клеток по отношению к растворам многих веществ обладают свойствами полупроницаемой мембраны. В чистой воде клетка сильно набухает, в ряде случаев вплоть до разрыва оболочки, а в растворах с высокой концентрацией солей, наоборот, уменьшается в размерах и сморщивается из-за большой потери воды. Поэтому при консервировании пищевых продуктов к ним добавляется большое количество соли или сахара. Клетки микроорганизмов в таких условиях теряют значительное количество воды и гибнут.

Осмотическое давление обеспечивает движение воды в растениях за счет различия осмотических давлений между клеточным соком корней растений (5-20 бар) и почвенным раствором, дополнительно разбавляемом при поливе. Осмотическое давление обусловливает в растении подъем воды от корней до вершины. Таким образом, клетки листьев, теряя воду, осмотически всасывают ее из клеток стебля, а последние берут ее из клеток корня.


49. Рассчитать ЭДС медно-цинкового гальванического элемента, в котором концентрация ионов С u 2 + равна 0,001 моль/л, а ионов Zn 2+ 0,1 моль/л. При расчетах учтите стандартные значения ЭДС:

ε о (Zn 2+ /Zn 0) = – 0,74 В и ε о (Cu 2 + /Cu 0) = + 0,34 В.

Для расчета величины ЭДС используется уравнение Нернста

54. Методы получения дисперсных систем, их классификация и краткая характеристика. Какой метод получения дисперсных систем с термодинамической точки зрения наиболее выгоден?

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

Например, свежеприготовленный и быстро промытый осадок гидроксида железа переходит в коллоидный раствор красно-бурого цвета от добавления небольшого количества раствора FeCl 3 (адсорбционная пептизация) или HCl (диссолюция).

Механизм образования коллоидных частиц по методу пептизации изучен довольно полно: происходит химическое взаимодействие частиц на поверхности по схеме:

Далее агрегат адсорбирует ионы Fe +3 или FeO + , последующие образуются в результате гидролиза FeCl 3 и ядро мицеллы получает положительный заряд. Формулу мицеллы можно записать в виде:

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

1) Коэффициент диффузии для сферической частицы рассчитывается по уравнению Эйнштейна:

,

где N А – число Авогадро, 6 10 23 молекул/моль;

h – вязкость дисперсионной среды, Н · с/м 2 (Па · с);

r – радиус частицы, м;

R – универсальная газовая постоянная, 8,314 Дж/моль · К;

T – абсолютная температура, К;

число 3,14.

2) Среднее квадратичное смещение:

  ·D·

где   среднее квадратичное смещение (усредненная величина сдвига) дисперсной частицы, м 2 ;

время, за которое происходит смещение частицы (продолжительность диффузии), с;

D  коэффициент диффузии, м 2 . с -1 .

  ·D·=2*12,24*10 -10 *5=12,24*10 -9 м 2

Ответ:    12,24*10 -9 м 2 .

74. Поверхностно-активные вещества. Описать причины и механизм проявления их поверхностной активности.

При малых концентрациях ПАВ образуют истинные растворы, т.е. частицы диспергированы а них до отдельных молекул (или ионов). по мере увеличения концентрации возникают мицеллы. в водных растворах органические части молекул в мицеллах объединяются в жидкое углеводородное ядро, а полярные гидратированные группы находятся в воде, при этом общая площадь контакта гидрофобных частей молекул с водой резко сокращается. Благодаря гидрофильности полярных групп, окружающих мицеллу, поверхностное (межфазное) натяжение на границе ядро-вода понижено до значений, обеспечивающих термодинамическую устойчивость таких агрегатов по сравнению с молекулярным раствором и макрофазой ПАВ.

При малых мицеллярных концентрациях образуются сферические мицеллы (мицеллы Гартли) с жидким аполярным ядром.

Поверхностная активность связана с химическим составом вещества. Она, как правило, увеличивается с уменьшением полярности ПАВ (для водных растворов).

Согласно Ленгмюру, при адсорбции полярная группа, обладающая большим сродством к полярной фазе, втягивается в воду, а углеводородный неполярный радикал выталкивается наружу. происходящее при этом уменьшение энергии Гиббса ограничивает размеры поверхностного слоя толщиной в одну молекулу. при этом образуется так называемый мономолекулярный слой.

В зависимости от строения молекулы ПАВ подразделяются на неионогенные, построенные на основе эфиров, включающих этоксигруппы, и ионогенные – на основе органических кислот и оснований.

Ионогенные ПАВ диссоциируют в растворе с образованием поверхностно-активных ионов, например:

Если при диссоциации образуются поверхностно – активные анионы, ПАВ называют анионоактивными (соли жирных кислот, мыла). Если при диссоциации образуются поверхностно-активные катионы, ПАВ называют катионно-активными (соли первичных, вторичных и третичных аминов).

Существуют ПАВ которые в зависимости от рН раствора могут быть как катионноактивными, так и аниноактивными (белки, аминокислоты).

Особенность молекул ПАВ заключается в том, что они обладают большой поверхностной активностью по отношению к воде, что отражает сильную зависимость поверхностного натяжения водного раствора ПАВ от его концентрации.

При малых концентрациях ПАВ адсорбция пропорциональна концентрации.

Поверхностная активность связана с химическим составом вещества. Она, как правило, увеличивается с уменьшением полярности ПАВ (для водных растворов). Например, для карбоновых кислот величина активности выше, чем для их солей.

При исследовании гомологических рядов была обнаружена четкая зависимость активности от длины углеводородного радикала.

На основании большого количества экспериментального материала в конце 19 века Дюкло и Траубе сформулировали правило: поверхностная активность в ряду гомологов увеличивается в 3-3,5 раза при увеличении углеводородной цепи на одну СН 2 группу.

По мере увеличения концентрации адсорбция на поверхности жидкости сначала резко возрастает, а затем приближается к некоторому пределу, называемому предельной адсорбцией.

На основании этого факта и большого числа исследований, Ленгмюр выдвинул представление об ориентации молекул в поверхностном слое. Согласно Ленгмюру, при адсорбции полярная группа, обладающая большим сродством к полярной фазе – воде, втягивается в воду, а углеводородный неполярный радикал выталкивается наружу. Происходящее при этом уменьшение энергии Гиббса ограничивает размеры поверхностного слоя толщиной в одну молекулу. При этом образуется так называемый мономолекулярный слой.

Мономолекулярные пленки на поверхности воды могут находиться в трех состояниях: газообразном, жидком и твердом. Жидкие и твердые поверхностные пленки называются также конденсированными.

Если силы, действующие между молекулами в пленке, сравнительно невелики, то молекулы ПАВ свободно распределяются по поверхности воды, максимально удаляясь друг от друга, что обусловливает поверхностное давление, действующее в направлении, противоположном поверхностному натяжению, такую пленку можно считать двумерным газом, так как молекулы этого газа не могут оторваться от поверхности воды и могут двигаться только в двух измерениях. К веществам, образующим на воде двумерные газообразные пленки, относятся, например, жирные кислоты с числом углеводородных атомов от 12 до 20-22, алифатические спирты и амины с не очень большой молекулярной массой.

Если тангенциально действующие силы между углеводородными радикалами молекул ПАВ в поверхностной пленке велики, то молекулы слипаются, образуя крупные конденсированные «острова», в которых тепловое движение молекул затруднено. В таких «островах» молекулы обычно ориентируются параллельно друг другу и перпендикулярно поверхности воды. Следует, однако, заметить, что, например, при повышении температуры конденсированные пленки могут переходить в газообразные.

Конденсированные пленки обычно жидкие, и молекулы в них перемещаются довольно свободно. если же силы взаимодействия между радикалами настолько велики, что молекулы не могут перемещаться, то конденсированные пленки можно рассматривать как твердые. Такие пленки образуют карбоновые кислоты с числом углеродных атомов более 20-24.

О наличии у поверхностных пленок свойств твердого тела можно убедиться, напыляя на поверхность порошок. Если пленка твердая, то при осторожном сдувании порошок остается неподвижным, если жидкая -порошок перемещается по поверхности.

Следует отметить, что помимо газообразных и конденсированных пленок существуют еще так называемые растянутые пленки, занимающие промежуточное положение.

Такие пленки могут образовываться из конденсированных при повышении температуры. Полагают, что в растянутых пленках углеводородные радикалы молекул ПАВ не ориентированы параллельно, а переплетены между собой, лежат «плашмя» на воде, что препятствует неограниченному растеканию пленки, в то время как полярные группы относительно свободно перемещаются в поверхностном слое.

Способность веществ образовывать те или иные пленки для ионогенных ПАВ зависит от рН раствора. Высшие жирные кислоты в кислых и нейтральных растворах (т.е. при практически недиссоциированных группах) при определенной температуре дают на поверхности раздела с воздухом растянутые пленки. При той же температуре в щелочной среде на поверхности раствора образуются газообразные пленки, что обусловлено отталкиванием одноименных зарядов соседних групп, появившихся в результате их диссоциации.

89. Написать формулу строения мицеллы золя, образованного в результате взаимодействия указанных веществ(избытка одного, затем другого вещества): CdCl 2 + Na 2 S ; FeCl 3 + NaOH . Назвать составляющие компоненты мицеллы.

1) CdCl 2 + Na 2 S

Избыток CdCl 2 дает мицеллу:

[ (CdCl 2) Cd 2+ · Cl – ] + x Cl –

зародыш: (CdCl 2)

ядро: [ (CdCl 2) Cd 2+

гранула: [ (CdCl 2) Cd 2+ · Cl – ] +

Избыток Na 2 S дает мицеллу:

– x Na +

зародыш: (NaCl)

ядро: (NaCl) 2 Cl -

гранула: [ (CdCl 2) Cd 2+ · Cl – ] +

2) FeCl 3 + NaOH

Избыток FeCl 3 дает мицеллу:

[ (FeCl 3) Fe 3+ · 2Cl – ] + x Cl –

зародыш: (FeCl 3)

ядро: (FeCl 3) Fe 3+

гранула: [ (FeCl 3) Fe 3+ · 2Cl – ] +

Избыток NaOH дает мицеллу:

– x Na +

зародыш: (NaCl)

ядро: 3 (NaCl) 3 Cl –

гранула: –

94. Защита коллоидных частиц с использованием ВМС. Механизм защитного действия. Белки, углеводы, пектины как коллоидная защита.

Коллоидная защита – стабилизация дисперсной системы путем образования адсорбционной защитной оболочки вокруг частиц дисперсной фазы. Белки, пектины и углеводы выступают как стабилизаторы дисперсных систем, предохраняющих системы от дальнейшей коагуляции или седиментации.

110. Пены, условия их образования и свойства. Роль пенообразования для продуктов питания и примеры использования пен.

Пены – высококонцентрированные дисперсные системы (объемная доля газа более 60-80%), в которых дисперсная фаза – газ, а дисперсионная среда – жидкость или твердое тело (пенобетон, пеногипс, пенополимеры и т.д.). Пены – грубодисперсные системы, размер пузырьков в которых от 0,01 см до 0,1 см и более. Чаще всего пены с жидкой дисперсионной средой получают диспергированием газа в жидкости в присутствии стабилизатора, который в этом случае называют пенообразователем.

В качестве продуктов питания, представляющих собой пены можно привести такие пены как взбитые сливки в баллонах, молочные коктейли тоже получают методом взбивания и первоначально его составляющие образуют пену. При помощи пенообразования в пищевой промышленности добиваются извлечением из растворов ценных примесей, что является особенно эффективным в сухих пенах. Но при производстве сахара пена мешает нормальному протеканию процессов и в этом случае производят пеногашение.


ЛИТЕРАТУРА

Ахметов Б. В. Задачи и упражнения по физической и коллоидной химии. – Л.: Химия, 1989.

Гамеева О. С. Физическая и коллоидная химия. – М.: Высшая школа, 1983.

Евстратова К. И., Купина Н. А., Малахова Е. М. Физическая и коллоидная химия. – М.: Высшая школа, 1990.

Зимон А. Д., Лещенко Н. Ф. Коллоидная химия. – М.: Химия, 2001.

Зимон А. Д., Лещенко Н. Ф. Физическая химия. – М.: Химия, 2000.

Киселев Е. В. Сборник примеров и задач по физической химии. – М.: Высшая школа, 1983.

Кнорре Д. Г. Физическая химия. – М.: Высшая школа, 1990.

Стромберг А. Г. Физическая химия. – М.: Высшая школа, 2001.

Степин Б. Д. Международные системы единиц физических величин в химии. – М.: Высшая школа, 1990.

Фридрихсберг Д. А. Курс коллоидной химии. – Л.: Химия, 1995.

Хмельницкий Р. А. Физическая и коллоидная химиия. – М.: Высшая школа, 1988.

Методы конденсации по сравнению с методами диспергирования дают возможность получать коллоидные системы более высокой дисперсности. Кроме того, они обычно не связаны с применением специальных машин.

Конденсационные методы получения дисперсных систем основаны на создании условий, при которых будущая дисперсионная среда пересыщается веществом будущей дисперсной фазы. В зависимости от способов создания этих условий конденсационный метод подразделяют на физический и химический .

К физической конденсации относятся:

а) Конденсация паров при пропускании их через холодную жидкость, в результате чего образуются лиозоли. Так, при пропускании паров кипящей ртути, серы, селена в холодную воду образуются их коллоидные растворы.

б) Замена растворителя . Метод основан на том, что вещество, из которого хотят получить золь, растворяют в подходящем растворителе, затем добавляют вторую жидкость, являющуюся плохим растворителем для вещества, но хорошо смешивающуюся с исходным растворителем. Растворенное первоначально вещество выделяется из раствора в высокодисперсном состоянии. Например, таким путем можно получить гидрозоли серы, фосфора, канифоли, парафина и многих других органических веществ, вливая их спиртовый раствор в воду.

Химическая конденсация отличается от всех рассмотренных выше методов тем, что диспергируемое вещество берут не в готовом виде, а получают непосредственно в растворе химической реакцией, в результате которой образуется нерастворимое в данной среде нужное соединение. Задача сводится к тому, чтобы получить выпадающий осадок в мелкодисперсном состоянии. При сливании растворов необходимо добиться таких условий, чтобы возникло много центров кристаллизации, тогда образующиеся кристаллики будут очень маленького размера. Оптимальные условия получения золей (концентрация растворов, порядок сливания, скорость сливания, соотношение компонентов, температура) обычно находят опытным путем.

В методах химической конденсации используются любые реакции, ведущие к образованию новой фазы: реакция двойного обмена, разложения, окисления-восстановления и т.д. Можно использовать электрохимические реакции, например, восстановление металлов электролизом.

Ниже приведены некоторые примеры синтеза коллоидных систем с использованием различных реакций. Стабилизатором коллоидного раствора служит обычно один из участников реакции или побочный продукт, из которых на границе раздела частица – среда образуются адсорбционные слои ионного или молекулярного типа, препятствующие слипанию частиц и выпадению их в осадок.

При взаимодействии газообразных NH 3 и HCl образуется аэрозоль (дым) твердого хлорида аммония (реакция соединения):

NH 3 + HCl = NH 4 Cl

Реакцией тиосульфата натрия с серной кислотой можно получить гидрозоль серы (реакция окисления-восстановления):

Na 2 S 2 O 3 + H 2 SO 4 = S¯ + Na 2 SO 4 + SO 2 + H 2 O

Многие золи можно синтезировать с помощью реакций обмена:

Na 2 SiO 3 + 2HCl = H 2 SiO 3 ¯ + 2NaCl

KJ + AgNO 3 = AgJ¯ + KNO 3 .

Полученные золи загрязнены примесями низкомолекулярных веществ.

Очистка дисперсных систем

Для очистки дисперсных систем от растворенных низкомолекулярных веществ Грэм предложил воспользоваться способностью мелкопористых пленок (мембран) задерживать частицы дисперсной фазы и свободно пропускать ионы и молекулы. Этот способ назван диализом .

Очищаемую дисперсную систему помещают в сосуд, изготовленный из мелкопористого материала, или имеющий мелкопористое дно (рис. 9.33 а). Сосуд омывается проточной водой (дистиллированной). Согласно законам диффузии, ионы и молекулы растворенного вещества, содержащиеся в дисперсной системе в виде примесей, проникают через поры мембраны в дистиллированную воду, а частицы дисперсной фазы задерживаются и остаются в дисперсной системе.


Рис. 9.33. Схемы диализатора (а) и электродиализатора (б)

Скорость диализа очень мала, но ее можно значительно увеличить (в 10-20 раз), воспользовавшись действием электрического поля на ионы растворенной примеси. Такой метод очистки дисперсных систем от примесей электролитов называют электродиализом .

Электродиализатор (рис.9.33. б) - это сосуд, разделенный мембранами на три отсека, из которых средний заполняют очищаемой дисперсной системой, а в крайних размещены электроды; через эти же отсеки циркулирует жидкость, однородная с веществом дисперсионной среды очищаемой системы. При наложении на электроды достаточной разности потенциалов (несколько сот вольт) дисперсная система относительно быстро очищается от электролита.

В настоящее время диализ используют во многих производствах. Особенно эффективен он в медицине. Например, на принципе электролиза основано действие аппарата «искусственная почка», позволяющего очищать кровь больного от вредных продуктов жизнедеятельности организма.

Ультрафильтрация – метод очистки золей путем продавливания дисперсионной среды с низкомолекулярными примесями через ультрафильтры. Ультрафильтры – это мембраны с таким размером пор, через которые проходят примеси и растворитель, но не проходят частицы золя (или высокомолекулярных соединений).

В мешочек, изготовленный из ультрафильтра, наливают очищаемый золь и под давлением продавливают его через мембрану. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. В мешочке остается чистый золь.

Таким образом, для получения дисперсных систем используют как методы измельчения крупных частиц (диспергирование ), так и методы, основанные на объединении молекулярных частиц до размеров коллоидных (конденсация ). Диспергационные методы позволяют получать грубодисперсные системы с крупными размерами частиц. Конденсационные методы позволяют получать высокодисперсные золи. Очистку дисперсных систем от низкомолекулярных примесей осуществляют с помощью мелкопористых фильтров – мембран .

Коллоидные системы по степени дисперсности занимают промежуточное положение между истинными растворами (молекулярно- или ионно-дисперсными системами) и грубодисперсными системами. Поэтому существуют две группы методов получения дисперсных систем: 1 группа – диспергирование, т.е. размельчение частиц дисперсной фазы грубодисперсных систем, 2 группа основана на процессах агрегации (конденсации), в которых молекулы под действием сил сцепления объединяются и дают сначала зародыш новой фазы, а затем - настоящие частицы новой фазы

Еще одним необходимым условием получения золей, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов – веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука.

Методы конденсации

Вещество, находящееся в молекулярно-дисперсном состоянии, можно перевести в коллоидное состояние при замене одного растворителя другим – т.е. методом замены растворителя. В качестве примера можно привести получение золя канифоли, которая не растворяется в воде, но хорошо растворима в этаноле. При постепенном добавлении спиртового раствора канифоли к воде происходит резкое понижение растворимости канифоли, в результате чего образуется коллоидный раствор канифоли в воде. Аналогичным образом может быть получен гидрозоль серы.

Коллоидные растворы можно получать также и методом химической конденсации, основанном на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д. Так, красный золь золота получают восстановлением натриевой соли золотой кислоты формальдегидом:

NaAuO 2 + HCOH + Na 2 CO 3 ––> Au + HCOONa + H 2 O

Конец работы -

Эта тема принадлежит разделу:

Физическая химия

Красноярский государственный университет.. Н С Кудряшева физическая химия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физическая химия
Учебное пособие Красноярск 2007 УДК 541.128: ББК 35.514 Я 73

И развитие
Все известные химические реакции независимо от природы реагирующих веществ сопровождаются различными физическими явлениями - выделением или поглощением теплоты, света, изменением об

Идеальные газы. Уравнения состояния газов
Уравнением состояния идеального газа является уравнение Клапейрона-Менделеева; простейшим уравнением состояния реального газа - уравнение Ван-дер-Ваальса. Здесь следует нап

Внутренняя энергия, теплота, работа
Внутренняя энергия U характеризует общий запас энергии движения и взаимодействия всех частиц, составляющих систему. Она включает энергию поступательного и вращательного движения молекул, эне

Первый закон термодинамики
Первый закон термодинамики является постулатом. Это означает, что этот закон не может быть доказан логическим путем, а вытекает из суммы человеческого опыта. Справед

Первый закон термодинамики в изобарных, изохорных, изотермических и адиабатических условиях для идеальных газовых систем
Уравнение первого закона термодинамики, как уже сказано выше, для изобарных (p = const) условий в идеальной газовой системе имеет вид: QP = DН = DU + р

Закон Гесса. Следствия из закона Гесса
Термохимия - раздел физической химии, в котором изучаются тепловые эффекты химических реакций. Тепловой эффект химической реакции – это теплота, котора

Стандартные тепловые эффекты
Для удобства сопоставления тепловых эффектов, а также других термодинамических функций вводится представление о стандартном состоянии вещества. Для твердых и жидких веществ в качестве стандартных с

Первое следствие из закона Гесса
Это следствие связано с теплотами образования соединений. Теплотой (энтальпией) образования соединения называется количество теплоты, выделяемой или поглощаемой при образовании 1 мол

Второе следствие из закона Гесса
В некоторых случаях удобнее вычислять тепловой эффект реакции по теплотам (энтальпиям) сгорания веществ, участвующих в реакции. Теплотой (энтальпией) сгорания соединения называется те

Уравнение Кирхгофа. Зависимость теплового эффекта реакции от температуры
Дифференцируя по температуре (при постоянном давлении) равенство DН = Н2 − Н1 получаем ¶(

Понятие об энтропии. Статистическая термодинамика и физический смысл энтропии
Все процессы, протекающие в природе, можно разделить на самопроизвольные и несамопроизвольные. Самопроизвольные процессы протекают без затраты энергии извне; для про

Изменение энтропии как критерий самопроизвольного протекания процесса в изолированной системе
Самопроизвольные процессы идут без затраты энергии извне. Самопроизвольное течение процесса связано с необратимостью. Необратимыми в термодинами

Постулат Планка. (Третий закон термодинамики)
В отличие от внутренней энергии и энтальпии, для энтропии можно определить абсолютные значения. Эта возможность появляется при использовании постулата Планка, которы

Термодинамические потенциалы
Математический аппарат термодинамики строится на основе объединенного уравнения первого и второго законов термодинамики для обратимых процессов: dU = T·d

Изменение энергии Гиббса в химических реакциях
Расчет DG для химических процессов можно осуществить двумя способами. В первом способеиспользуется соотношение (27): DG = D

Химический потенциал
Рассмотрим системы, в которых изменяются количества веществ. Эти изменения могут происходить в результате химических реакций или фазовых переходов. При этом изменяют

Правило фаз Гиббса
Компонент - содержащееся в системе химически однородное вещество, которое может быть выделено из системы и может существовать в изолированном виде длительное

Однокомпонентные системы
При kн = 1 уравнение правила фаз примет вид: С = 3 - Ф, Если в равновесии 1 фаза, то С = 2, гово

Фазовая диаграмма воды
Фазовая диаграмма воды в координатах р - Т представлена на Рис.8. Она составлена из 3 фазовых полей - областей различных (р, Т)-значений, при ко

Фазовая диаграмма серы
Кристаллическая сера существует в виде двух модификаций – ромбической (Sр) и моноклинной (Sм). Поэтому возможно существова

Уравнение Клаузиуса – Клапейрона
Движение вдоль линий двухфазного равновесия на фазовой диаграмме (С=1) означает согласованное изменение давления и температуры, т.е. р = f(Т). Общий вид такой функции для однокомпонен

Энтропия испарения
Мольная энтропия испарения DSисп = DHисп/Ткип равна разности Sпара - Sжидк. Поскольку Sп

Химическое равновесие
Термодинамическим равновесием называется такое состояние системы, характеристики которого (температура, давление, объем, концентрации) не изменяется во времени при постоянств

Закон действия масс. Константы равновесия
Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации Сi,

Изобара и изохора химической реакции
Для получения зависимости константы равновесия Кр от температуры используем уравнение Гиббса-Гельмгольца:

Термодинамика растворов
Существование абсолютно чистых веществ невозможно – всякое вещество обязательно содержит примеси, или, иными словами, всякая гомогенная система многокомпонентна. Раствор – гомогенная систе

Образование растворов. Растворимость
Концентрация компонента в растворе может изменяться от нуля до некоторого максимального значения, называемого растворимостью компонента. Растворимость – концентрация компонента в насыщенном

Растворимость газов в жидкостях
Растворимость газов в жидкостях зависит от ряда факторов: природы газа и жидкости, давления, температуры, концентрации растворенных в жидкости веществ (особенно силь

Взаимная растворимость жидкостей
В зависимости от природы, жидкости могут смешиваться в любых соотношениях (в этом случае говорят о неограниченной взаимной растворимости), могут быть практически нер

Растворимость твердых веществ в жидкостях
Растворимость твердых веществ в жидкостях определяется природой веществ и, как правило, существенно зависит от температуры; сведения о растворимости твердых тел цели

Связь между составом жидкого раствора и пара. Законы Коновалова
Относительное содержание компонентов в паре, как правило, отличается от их содержания в растворе – пар относительно богаче компонентом, температура кипения которого ниже. Этот факт

Давление насыщенного пара разбавленных растворов. Закон Рауля
Представим, что в равновесную систему жидкость А – пар А введено некоторое вещество В. При образовании раствора мольная доля растворителя XА станов

Отклонения от закона Рауля
Если оба компонента бинарного (состоящего из двух компонентов) раствора летучи, то пар над раствором будет содержать оба компонента. Рассмотрим бинарный раствор, сос

Температура кристаллизации разбавленных растворов
Раствор, в отличие от чистой жидкости, не отвердевает целиком при постоянной температуре. При некоторой температуре, называемой температурой начала кристаллизации

Температура кипения разбавленных растворов
Температура кипения растворов нелетучего вещества всегда выше, чем температура кипения чистого растворителя при том же давлении. Рассмотрим р – T диаграмму со

Понятие активности растворенного вещества
Если концентрация растворенного вещества не превышает 0.1 моль/л, то раствор неэлектролита обычно считают разбавленным. В таких растворах взаимодействие между молеку

Коллигативные свойства растворов
Некоторые свойства растворов зависят только от концентрации растворенных частиц и не зависят от их природы. Такие свойства раствора носят название коллигативных. При этом даж

Теория электролитической диссоциации. Степень диссоциации
Электролиты – вещества, расплавы или растворы которых проводит электрический ток вследствие диссоциации на ионы. Для объяснения особенностей свойств растворов электролитов С.Аррениус предл

Слабые электролиты. Константа диссоциации
Процесс диссоциации слабых электролитов является обратимым. В системе устанавливается динамическое равновесие, которое может быть количественно оценено константой ра

Сильные электролиты
Сильные электролиты в растворах любых концентраций полностью диссоциируют на ионы и, следовательно, закономерности, полученные для слабых электролитов, не могут применяться к сильным электролитам б

Электропроводность растворов электролитов
Электрический ток есть упорядоченное перемещение заряженных частиц. Растворы электролитов обладают ионной проводимостью, обусловленной перемещением ионов в электриче

Электрические потенциалы на фазовых границах
При соприкосновении металлического электрода (проводника с электронной проводимостью) с полярным растворителем (водой) либо раствором электролита на границе электрод – жидкость возникает двой

Гальванический элемент. ЭДС гальванического элемента
Рассмотрим простейший гальванический элемент Даниэля-Якоби, состоящий из двух полуэлементов – цинковой и медной пластин, помещенных в растворы сульфатов цинка и меди соответственно, которые соедине

Электродный потенциал. Уравнение Нернста
ЭДС гальванического элемента E удобно представлять в виде разности некоторых величин, характеризующих каждый из электродов – электродных потенциалов; о

Электроды сравнения
Для определения потенциала электрода необходимо измерить ЭДС гальванического элемента, составленного из испытуемого электрода и электрода с точно известным потенциал

Индикаторные электроды
Электроды, обратимые относительно иона водорода, используются на практике для определения активности этих ионов в растворе (и, следовательно, рН раствора) потенциоме

Окислительно-восстановительные электроды
В отличие от описанных электродных процессов в случае окислительно-восстановительных электродов процессы получения и отдачи электронов атомами или ионами происходят

Скорость химической реакции
Основное понятие химической кинетики – скорость химической реакции. Скорость химической реакции есть изменение концентрации реагирующих веществ в единицу времени. Математич

Основной постулат химической кинетики
(закон действия масс в химической кинетике) В основе химической кинетики лежит основной постулат химической кинетики: Скорость химической реакции прямо пропорцио

Реакции нулевого порядка
Подставим в уравнение (74) выражение (71), с учетом того, что расчет ведется по исходному веществу А (что обусловливает выбор знака «минус»):

Реакции первого порядка
Подставим в уравнение (75) выражение (71): Интегрирование

Реакции второго порядка
Рассмотрим простейший случай, когда кинетическое уравнение имеет вид (76). В этом случае с учетом (71) можно записать:

СН3СООС2Н5 + Н2О ––> СН3СООН + С2Н5ОН
Если проводить эту реакцию при близких концентрациях этилацетата и воды, то общий порядок реакции равен двум и кинетическое уравнение имеет следующий вид:

Методы определения порядка реакции
Для определения частных порядков реакции используется метод избыточных концентраций. Он заключается в том, что реакция проводится в условиях, когда концентрация одного из реагентов много мен

Параллельные реакции
Исходные вещества одновременно могут образовывать различные продукты реакции, например, два или более изомера:

Цепные реакции
Эти реакции состоят из ряда взаимосвязанных стадий, когда частицы, образующиеся в результате каждой стадии, генерируют последующие стадии. Как правило, цепные реакции протекают с участием свободных

Уравнения Вант-Гоффа и Аррениуса
Константа скорости реакции k в уравнении (72) есть функция температуры; повышение температуры, как правило, увеличивает константу скорости. Первая попытка учесть влияние температуры была сде

Фотохимические реакции
Преодоление барьера активации при взаимодействии молекул может осуществляться путем подачи энергии системе в виде квантов света. Реакции, в которых активация частиц

Катализ
Скорость химической реакции при данной температуре определяется скоростью образования активированного комплекса, которая, в свою очередь, зависит от величины энергии

Уравнение Михаэлиса
Ферментативный катализ – каталитические реакции, протекающие с участием ферментов – биологических катализаторов белковой природы. Ферментативный катализ имеет две характерные особеннос

Молекулярно кинетические свойства дисперсных систем
Для раздробленных частиц характерно броуновское движение. Оно тем интенсивнее, чем меньше диаметр частиц и меньше вязкость среды. При диаметре частиц, равном 3-4 мкм, броуновское движение вы

Оптические свойства коллоидных систем
Для коллоидных систем характерно матовое (обычно голубоватое) свечение, которое можно наблюдать на темном фоне при пропускании через них пучка света. Это свечение на

Адсорбция. Уравнение Гиббса
Адсорбцией называется явление самопроизвольного сгущения в поверхностном слое массы вещества, понижающего своим присутствием поверхностное натяжение. Величина адсорбции (Г, моль/м

Адсорбция на границе твердое тело – газ
При адсорбции газов на твердых телах описание взаимодействия молекул адсорбата (вещества, которое адсорбируется) и адсорбента (вещества, которое адсорбирует) представляет собой весьма сложную

Адсорбция из растворов
Поверхностно-активные вещества (ПАВ) Поверхностно-активные вещества (ПАВ) уменьшают поверхностное натяжение. Молекулы ПАВ, адсорбирующихся на границе водный р

Мицеллообразование
Как и адсорбция, явление мицеллообразования, связано с молекулярными взаимодействиями ее полярных молекул (частей молекул) и гидрофобными сцеплениями углеводородной цепи. Выше

Двойной электрический слой и электрокинетические явления
При рассмотрении строения мицеллы было показано, что на поверхности коллоидных частиц образуется двойной электрический слой (ДЭС). Первая теория строения ДЭС была развита Гельмгольцем и Перре

Золь - дисперсная система с твердочастичной дисперсной фазой. Аэрозоль соответствует газообразной дисперсной среде, а лиозоль (гидрозоль) - жидкой дисперсной среде.

Диспергирование жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости, несмешивающейся с первой.

Дисперги́рование - тонкое измельчение твердых тел или жидкостей, в результате чего получают порошки, суспензии, эмульсии (эмульги́рование , или эмульга́ция ). При диспергировании твердых тел происходит их механическое разрушение.

Методы диспергирования

механическое диспергирование – осуществляется под действием внешней механической работы. Способы: истирание, раздавливание, раскалывание, распыление, барботаж (пропускание струи воздуха через жидкость), встряхивание, взрыв, действие звуковых и ультразвуковых волн. Таким методом получают муку, сахарную пудру, какао порошок, пряности, молотый кофе и другие. Размер частиц, получаемых этим методом, к.п. довольно большой, не менее 100 нм. Оборудование: ступки, мельницы, дробилки различных типов, жернова.

Для повышения эффективности механическое диспергирование проводят в жидкой среде. Жидкости (растворы ПАВ, электролитов), смачивающие твердое тело, адсорбируются на нем и снижаютпрочность при механической обработке. Это называется адсорбционное понижение прочности твердых тел или эффект Ребиндера (обосновано в 1982 г. П.А. Ребиндером).

электрическое диспергирование – основан на образовании вольтовой дуги между электродами из распыляемого металла, помещенными в охлаждаемую ДС. Металлы при температуре вольтовой дуги испаряются, а затем в холоднойДС конденсируются. Таким методом получают в основном гидрозоли металлов (дисперсионной средой является вода), например серебра, золота и платины.

диспергирование ультразвуком – основано на воздействии при помощи ультразвуковых колебаний с частотой выше 20 тыс. в 1 с., не улавливаемых человеческим ухом, эффективно лишь для веществ с небольшой прочностью. К ним относят серу, графит, крахмал, каучук, желатин и др.

К физико-химическому диспергированию относится метод пептизации. Он заключается в переводе свежеприготовленных рыхлых осадков в коллоидный раствор под действием специальных стабилизирующих добавок (пептизаторов – электролиты, растворы ПАВ). Действие пептизатора заключается в том, что частицы осадка отделяются друг от друга и переходят во взвешенное состояние, образуя золь. Таким методом можно получить, например, гидрозоль гидроксида железа (III ). Метод пептизации можно применять только для свежеприготовленных осадков, так как в процессе хранения происходят процессы рекристаллизации и старения, приводящие к сращиванию частиц друг с другом. Размеры частиц получаемых данным методом около 1 нм .
Поделиться