Градиент концентрации формула. Концентрационный градиент натрия (Na), как движущая сила мембранного транспорта. T – абсолютная температура

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделенные полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ .

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Пассивный транспорт - перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия , осмос ). Диффузия - пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос - пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт .

Простая диффузия

При простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина ). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Облегченная диффузия

Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегченной диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегченной диффузии по сравнению с простой пассивной диффузией. Скорость облегченной диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегченная диффузия не требует специальных энергетических затрат за счет гидролиза АТФ. Эта особенность отличает облегченную диффузию от активного трансмембранного транспорта.

Градиент концентрации

Градиент концентрации

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Определение

Градиент концентрации направлен по пути l , соответствующему нормали к изоконцентрационной поверхности (полупроницаемой мембране). Значение концентрационного градиента gradC равно отношению элементарного изменения концентрации dC к элементарной длине пути dl :

При постоянном значении градиента концентрации C на длине пути l :

Здесь C 1 и C 2 - начальное и конечное значение концентрации на длине пути l (нормали к изоконцентрационной поверхности).

Градиент концентрации может быть причиной переноса веществ, например диффузии . Диффузия осуществляется против градиента концентрации.

Единицей измерения градиента концентрации является величина м −2 , а также её дольные или кратные производные.

В научной литературе (биологии, химии и др.) достаточно часто данный термин встречается в значении степени различия, то есть не векторной , а скалярной величины , показывающей разницу концентраций между двумя ограниченными областями, что является грубой ошибкой. В связи с этим, говоря, например, о пассивном транспорте, указывают, что он осуществляется по градиенту концентрации, имея в виду по разности концентраций вещества, но это изменяет смысл термина, и потому такое его трактование неверно.

См. также

Литература

  • Антонов В. Ф., Черныш А. М., Пасечник В. И. Биофизика - М .: ВЛАДОС, 2000, С. 35. ISBN 5-691-00338-0
  • Трифонов Е.В. Психофизиология человека, 14-е изд. - СПб.: 2011.

Wikimedia Foundation . 2010 .

Смотреть что такое "Градиент концентрации" в других словарях:

    градиент концентрации - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN composition gradient …

    градиент концентрации - – разность содержания ионов K+, Na+, Ca2+ вне и внутри клетки (ионная асимметрия), что обеспечивает образование мембранного потенциала и регуляцию биоэффектов внутри клеток. Общая химия: учебник / А. В. Жолнин … Химические термины

    градиент концентрации - koncentracijos gradientas statusas T sritis fizika atitikmenys: angl. concentration gradient vok. Konzentrationsgradient, m rus. градиент концентрации, m pranc. gradient de la concentration, m … Fizikos terminų žodynas

    градиент концентрации примеси - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN impurity gradient … Справочник технического переводчика

    относительный градиент концентрации космических лучей - относительный градиент концентрации Вектор, направленный в сторону максимального увеличения концентрации космических лучей, модуль которого равен отношению производной концентрации в этом направлении к величине концентрации. [ГОСТ 25645.104 84]… … Справочник технического переводчика

    Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика) … Википедия

    анимально-вегетативный градиент - ЭМБРИОЛОГИЯ ЖИВОТНЫХ АНИМАЛЬНО ВЕГЕТАТИВНЫЙ ГРАДИЕНТ – градиент чувствительности у еще не оплодотворенной яйцеклетки с выраженным анимальным и вегетативным полюсами (например, у птиц при отмирании яйцеклетки изменения происходят вначале на… … Общая эмбриология: Терминологический словарь

    Теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика… … Большая советская энциклопедия

    Необратимый перенос массы компонента смеси в пределах одной или неск. фаз. Осуществляется в результате хаотич. движения молекул (мол. диффузия), макроскопич. движения всей среды (конвективный перенос), а в турбулентных потоках также в результате… … Химическая энциклопедия

    МКБ 10 E … Википедия

Здравствуйте! Согласно определению, градиент концентрации направлен из стороны меньшей концентрации в сторону большей. Поэтому про диффузию всегда говорят, что она направлена против градиента концентрации, т.е. из стороны с большей концентрации в сторону меньшей.
Однако, когда читаешь литературу про жизнедеятельность клетки, фотосинтез, в ней всегда говорится, что "по градиенту концентрации" - это в сторону уменьшения концентрации, а "против градиента концентрации"- в сторону увеличения концентрации и, таким образом, например, простая диффузия в клетках (или, иначе, обычная диффузия) направлена по градиенту концентрации.
Но ведь возникает противоречие. Получается, что выражение "по градиенту концентрации" на самом деле есть движение противное направлению градиенту концентрации. Как такое может быть?

Эта устойчивая и широко распространенная ошибка связана с различием в понимании направления вектора градиента концентрации в физике и биологии. Биологи предпочитают говорить о направлении вектора градиента концентрации от большего к меньшему значению, а физики от меньшего к большему.

ГРАДИЕНТ (лат. gradiens, gradient шагающий) - векторная величина, показывающая направление наиболее быстрого изменения какой-либо функции. Понятием Г. широко пользуются в физике, физ. химии, метеорологии и других науках для характеристики скорости изменения какой-либо величины на единицу длины в направлении ее максимального роста; Г. в биологии - это количественное изменение морфол, или функциональных (в т. ч. биохим.) свойств вдоль одной из осей тела, органа или клетки на любой стадии их развития. Г., отражающий изменение какого-либо физиол, показателя (напр., интенсивности обмена веществ), называют физиол, градиентом (см. Градиент физиологический). При рассмотрении различных биол, процессов чаще встречаются с Г. электрического поля, концентрационным Г., осмотическим Г., гидростатическим Г. и температурным Г.

Градиент электрического поля в биол, объектах возникает в результате перемещения ионов внутри клеток и тканей или вследствие приложения внешнего источника электрического поля, напр, при гальванизации (см. Гальванизация , Электрофорез). Особенно большие значения Г. электрического поля имеют место на биол, мембранах. Так, при толщине мембраны ок. 10 нм и при изменении потенциала на 10 же градиент электрического поля на ней составит 104 в/см. Такое значительное изменение внутреннего электрического поля мембраны может привести к изменению ее поляризации и степени упорядоченности ее структуры. Существует пороговое значение Г. потенциала, при к-ром клетки генерируют потенциал действия (см. Биоэлектрические потенциалы , Возбуждение).

Концентрационный градиент в живых тканях возникает при условии наличия значительной разницы в концентрации ионов во внутренней и внешней среде, напр, высокая внутренняя концентрация ионов калия и низкая концентрация ионов натрия и хлора. Так, внутри волокна сердечной мышцы крысы содержится 140 мкмолей ионов калия и 13 мкмолей ионов натрия на 1 г внутриклеточной воды. Во внешней среде содержится 2,7 мкмоля ионов калия и 150 мкмолей ионов натрия. Концентрационный Г. ионов калия может быть объяснен существованием так наз. доннановского равновесия (см. Мембранное равновесие) по обе стороны биол, мембраны. При этом недиффундирующие анионы (напр., анионы белковых макромолекул) вызывают неравномерное распределение концентрации как анионов (напр., C -), так и катионов (напр., K +) по обе стороны мембраны. Существование концентрационного Г. ионов натрия не может быть объяснено доннановским равновесием, и перенос ионов натрия против концентрационного Г. объясняют существованием активного транспорта ионов (см.). Концентрационный Г. ионов может возникать также в результате протекания метаболических процессов. В итоге все процессы перераспределения ионов по разные стороны биол, мембраны приводят к возникновению потенциалов покоя (см. Биоэлектрические потенциалы).

Поступление и выход различных веществ из клеток происходит вследствие наличия Г. их концентрации. Скорость диффузии веществ определяется соотношением: dn/dt =Dq grad C, где n - количество диффундирующих молекул через поверхность q, D - коэф. диффузии, grad С - градиент концентрации; коэффициент диффузии определяется вязкостью среды и размером молекул вещества. Различие в скорости диффузии катионов и анионов (их подвижности) приводит к появлению диффузионного потенциала φ, который возникает на границе двух соприкасающихся растворов и описывается уравнением Нернста:

где U - подвижность катиона, V - подвижность аниона, С1 и С2 - концентрация электролита в двух соприкасающихся р-рах; R - газовая константа, T - абсолютная t°, n - заряд иона, F - число Фарадея. Диффузионный потенциал минимален, когда подвижность катиона и аниона равны или близки, напр, в случае раствора KCl. Поэтому этот электролит используется в биологии и медицине в качестве жидкостного проводника при гальванизации, электрофорезе и т. д.

Осмотический градиент характеризует разницу в величине осмотического давления (см.) в системе растворитель - раствор, разделенных полупроницаемой мембраной, т. е. проницаемой для молекул растворителя, но непроницаемой для растворенного вещества. Осмотическое давление при этом определяется как величина силы, к-рую нужно приложить к р-ру, чтобы остановить движение растворителя в сторону р-ра. При изменении осмотического давления во внешней среде клетки (напр., при его увеличении) вода будет поступать в клетку; скорость поступления воды при этом будет пропорциональна осмотическому Г. (между внутренней и внешней средой клетки). Так, для эритроцитов скорость проникновения воды составляет величину 2,5 мкм 3 /мсм 2 -мин-атм. Величина осмотического давления крови высших животных ок. 40 мм вод. ст. и составляет малую часть от всего кровяного давления. При нарушении белкового или солевого обмена изменяется также и Г. осмотического давления, напр, при его увеличении вода будет поступать в ткань, вызывая отек (см.).

Гидростатический градиент характеризует перепад давления между внешней и внутренней средой клетки, целого организма или отдельных его частей. Так, работа сердца приводит к появлению гидростатического градиента. В артериальной части кровеносной системы возникает положительное гидростатическое давление, в венозной - отрицательное (см. Кровяное давление). Гидростатическое давление может компенсировать осмотическое, что имеет место в капиллярах кровеносной системы. При росте гидростатического Г. (напр., при гипертензии) усиливается выход воды из кровяного русла в ткани, что может привести к возникновению отеков.

Температурный градиент, возникающий вследствие разности температур внутри и вне клетки, существенно влияет практически на все процессы жизнедеятельности. Так, скорость диффузии электролитов увеличивается на 30- 40% при повышении температуры на 10°. Примерно на столько же увеличивается электропроводность клеток. Перенос тепла пропорционален Г. температуры по обе стороны поверхности; при этом Q = -λgrad T, где Q - количество тепла, переносимого через теплопроводящую поверхность, λ - коэф. теплопроводности, T - абсолютная температура. Основным источником тепла в организме человека и животных являются экзотермические процессы, протекающие при работе мышц и внутренних органов. Рассеивание тепла (напр., с поверхности тела человека) может происходить также путем конвекции, излучения и испарения. Все эти процессы ускоряются с ростом температурного Г.

Библиография: Байер В. Биофизика, пер. с нем., М., 1962; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968; Пасынский А. Г. Биофизическая химия, М., 1968.

Ю. М. Петрусевич.

Характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] .

Определение

Градиент концентрации направлен по пути l , соответствующему нормали к изоконцентрационной поверхности (полупроницаемой мембране). Значение концентрационного градиента texvc не найден; См. math/README - справку по настройке.): \nabla C равно отношению элементарного изменения концентрации dC к элементарной длине пути dl :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \nabla C = \frac{dC}{dl}

При постоянном значении градиента концентрации C на длине пути l :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \nabla C = \frac{C_1 - C_2}{l}

Здесь C 1 и C 2 - начальное и конечное значение концентрации на длине пути l (нормали к изоконцентрационной поверхности).

Градиент концентрации может быть причиной переноса веществ, например диффузии . Диффузия осуществляется против вектора градиента концентрации[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] .

Единицей измерения градиента концентрации в Международной системе единиц (СИ) является величина −4 (моль/м 4 или кг/м 4), а также её дольные или кратные производные.

См. также

Напишите отзыв о статье "Градиент концентрации"

Литература

  • Антонов В. Ф., Черныш А. М., Пасечник В. И. Биофизика - М .: ВЛАДОС, 2000, С. 35. ISBN 5-691-00338-0
  • Трифонов Е. В. - СПб.: 2011.

Отрывок, характеризующий Градиент концентрации

– Это Ведьмы и Ведуны, Изидора. Когда-то одним из них был твой отец... Мы обучаем их.
Сердце болело... Мне хотелось завыть волчьим голосом, жалея себя и свою короткую потерянную жизнь!.. Бросив всё, сесть вместе с ними, с этими счастливыми Ведунами и Ведьмами, чтобы познать умом и сердцем всю глубину чудесного, так щедро открытого им великого ЗНАНИЯ! Жгучие слёзы готовы были хлынуть рекой, но я из последних сил пыталась их как-то удерживать. Делать это было никак нельзя, так как слёзы были очередной «запрещённой роскошью», на которую у меня не было никакого права, если я мнила себя настоящим Воином. Воины не рыдали. Они боролись и побеждали, а если гибли – то уж точно не со слезами на глазах... Видимо, я просто очень устала. От одиночества и боли... От постоянного страха за родных... От бесконечной борьбы, в которой не имела ни малейшей надежды выйти победительницей. Мне был очень нужен глоток свежего воздуха, и этим воздухом для меня была моя дочь, Анна. Но почему-то, её нигде не было видно, хотя я знала, что Анна находится здесь, вместе с ними, на этой чудесной и странной, «закрытой» земле.
Север стоял рядом со мной на краю ущелья, и в его серых глазах таилась глубокая печаль. Мне захотелось спросить у него – увижу ли я его когда-либо? Но не хватало сил. Я не хотела прощаться. Не хотела уходить. Жизнь здесь была такой мудрой и спокойной, и всё казалось так просто и хорошо!.. Но там, в моём жестоком и несовершенном мире умирали хорошие люди, и пора было возвращаться, чтобы попытаться хоть кого-то спасти... Это по-настоящему был мой мир, каким бы страшным он не являлся. И мой оставшийся там отец возможно жестоко страдал, не в силах вырваться из лап Караффы, которого я железно решила, чего бы мне это не стоило, уничтожить, даже если за это придётся отдать свою короткую и такую дорогую для меня, жизнь...
– Могу ли я увидеть Анну? – с надеждой в душе, спросила я Севера.
– Прости меня, Изидора, Анна проходит «очищение» от мирской суеты... Перед тем, как она войдёт в тот же зал, где только что находилась ты. Она не сможет к тебе сейчас придти...
– Но почему же мне не понадобилось ничего «очищать»? – удивилась я. – Анна ведь ещё ребёнок, у неё нет слишком много мирской «грязи», не так ли?
Поделиться