Вероятность события теорема умножения вероятностей. Сложение и умножение вероятностей: примеры решений и теория. Теорема сложения вероятностей несовместных

Теорема умножения вероятностей двух произвольных событий: вероятность произведения двух произвольных событий равна произведению вероятности одного из событий на условную вероятность другого события, при условии, что первое уже произошло:

P(AB)=P(A)P(B|A) = P(B)P(A|B). (10)

Доказательство (не строгое): докажем теорему умножения для схемы шансов (равновероятных гипотез). Пусть возможные исходы опыта являются n шансами. Предположим, что событию A благоприятны m шансов (на рис. 11 имеют штриховку); событию B - k шансов; одновременно событиям A и B (AB) - l шансов (на. рис. 11 имеют светлую штриховку).

Рисунок 11

Очевидно, что m+k-l=n. По классическому способу вычисления вероятностей P(AB)=l/n; P(A)=m/n; P(B)=k/n. А вероятность P(B|A)=l/m, поскольку известно, что один из m шансов события A произошел, а событию B благоприятны l подобных шансов. Подставив данные выражения в теорему (10), получим тождество l/n=(m/n)(l/m). Теорема доказана.

Теорема умножения вероятностей трёх произвольных событий:

P(ABC)=|AB=D|=P(DC)=P(D)P(C|D)=P(AB)P(C|AB)=P(A)P(B|A)P(C|AB).(11)

По аналогии можно записать теоремы умножения вероятностей для большего количества событий.

Следствие 1. Если событие A не зависит от B, то и событие B не зависит от A.

Доказательство. Т.к. событие A не зависит от B, то по определению независимости событий P(A)=P(A|B)=P(А|). Требуется доказать, что P(B)=P(B|A).

По теореме умножения P(AB)=P(A)P(B|A)=P(B)P(A|B), следовательно, P(A)P(B|A)=P(B)P(A). Предполагая, что P(A)>0, разделим обе части равенства на P(A) и получим: P(B)=P(B|A).

Из следствия 1 вытекает, что два события независимы, если появление одного из них не изменяет вероятность появления другого. На практике, зависимыми являются события (явления), связанные между собой причинно-следственной связью.

Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий. Т.е. если события A и B независимы, то

P(AB)=P(A)P(B). (11)

Доказательство очевидно, поскольку для независимых событий P(B|A)=P(B).

Тождество (11) наряду с выражениями (12) и (13) являются необходимыми и достаточными условиями независимости двух случайных событий A и B.

P(A)=P(A|B); P(A)=P(А|); P(A|B)=P(А|); (12)

P(B)=P(B|A); P(B)=P(B|); P(B|A)=P(B|). (13)

Надёжность некоторой системы повышается двукратным резервированием (см. рис. 12). Вероятность безотказной работы первой подсистемы (в течение некоторой наработки) равна 0.9, второй - 0,8. Определить вероятность отказа системы в целом в течение заданной наработки, если отказы подсистем независимы.

Рисунок 12 - Двукратно резервированная система

E: исследование безотказности двукратно резервированной системы управления;

A 1 ={безотказная работа (в течение некоторой наработки) первой подсистемы}; P(A 1)=0,9;

A 2 ={безотказная работа второй подсистемы}; P(A 2)=0,8;

A={безотказная работа системы в целом}; P(A)=?

Решение. Выразим событие A через события A 1 и A 2 вероятности которых известны. Поскольку для безотказной работы системы достаточно безотказной работы хотя бы одного из её подсистем, то очевидно A=A 1 A 2.

Применяя теорему сложения вероятностей получим: P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1 A 2). Вероятность совместного наступления событий A 1 и A 2 определим по теореме умножения вероятностей: P(A 1 A 2)=P(A 1)P(A 2 |A 1). Учитывая, что (по условию) события A 1 и A 2 независимы, P(A 1 A 2)=P(A 1)P(A 2). Таким образом, вероятность безотказной работы системы равна P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1)P(A 2)=0,9+0,8-0,90,8=0,98.

Ответ: вероятность безотказной работы системы в течение заданной наработки равна 0,98.

Замечание. В примере 20 возможен другой способ определения события A через события A 1 и A 2: , т.е. отказ системы возможен при одновременном отказе обоих её подсистем. Применяя теорему умножения вероятностей независимых событий получим следующее значение вероятности отказа системы: . Следовательно, вероятность безотказной работы системы в течение заданной наработки равна.

Пример 21 (парадокс независимости)

E: бросается две монеты.

A={выпадение герба на первой монете}, P(A)=0,5;

B={выпадение герба на второй монете}, P(B)=0,5;

C={выпадение герба только на одной из монет}, P(C)=0,5.

События A, B и C попарно независимы, поскольку выполняются условия независимости двух событий (11)-(13):

P(A)=P(A|B)=0,5; P(B)=P(B|C)=0,5; P(C)=P(C|A)=0,5.

Однако P(A|BC)=0P(A); P(A|C)=1P(A); P(B|AC)=0P(B); P(C|AB)=0P(C).

Замечание. Попарная независимость случайных событий не означает их независимость в совокупности.

Случайные события называются независимыми в совокупности, если вероятность наступления каждого из них не изменяется с наступлением любой комбинации остальных событий. Для случайных событий A 1, A 2, … A n, независимых в совокупности, справедлива следующая теорема умножения вероятностей (необходимое и достаточное условие независимости в совокупности n случайных событий):

P(A 1 A 2 …A n)=P(A 1)P(A 2)…P(A n). (14)

Для примера 21 условие (14) не выполняется: P(ABC)=0P(A)P(B)P(C)=0,50,50,5=0,125. Следовательно, попарно независимые события A, B и C зависимы в совокупности.

Пример 22

В коробке находятся 12 транзисторов, три из которых неисправны. Для сборки двухкаскадного усилителя случайным образом извлекаются два транзистора. С какой вероятностью собранный усилитель будет неисправен?

E: выбор двух транзисторов из коробки с 9-ю исправными и 3-мя неисправными транзисторами;

A={неисправность собранного усилителя}; P(A)=?

Решение. Очевидно, что собранный двухкаскадный усилитель будет неисправен, если будет неисправен хотя бы один из двух отобранных для сборки транзисторов. Поэтому переопределим событие A следующим образом:

A={хотя бы один из двух отобранных транзисторов неисправен};

Определим следующие вспомогательные случайные события:

A 01 ={неисправен только первый из двух отобранных транзисторов};

A 10 ={неисправен только второй из двух отобранных транзисторов};

A 00 ={неисправны оба отобранных транзистора};

Очевидно, что A=A 01 A 10 A 00 (для наступления события A необходимо наступление хотя бы одного из событий A 01 или A 10 или A 00), причем события A 01, A 10 и A 00 несовместны (вместе произойти не могут), поэтому вероятность события найдем по теореме сложения вероятностей несовместных событий:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00).

Для определения вероятностей событий A 01, A 10 и A 00 введем вспомогательные события:

B 1 ={первый отобранный транзистор неисправен};

B 2 ={второй отобранный транзистор неисправен}.

Очевидно, что A 01 =B 1 ; A 10 =B 2 ; A 00 =B 1 B 2 ; поэтому для определения вероятностей событий A 01, A 10 и A 00 применим теорему умножения вероятностей.

P(A 01)=P(B 1)=P(B 1)P(|B 1),

где P(B 1) - вероятность того, что первый отобранный транзистор будет неисправен; P(|B 1) - вероятность того, что второй отобранный транзистор будет исправен, при условии, что первый отобранный транзистор неисправен. Применяя классический способ вычисления вероятностей, P(B 1)=3/12, а P(|B 1)=9/11 (поскольку после выбора первого неисправного транзистора в коробке осталось 11 транзисторов, 9 из которых исправны).

Таким образом, P(A 01)=P(B 1)=P(B 1)P(|B 1)=3/129/11=0,20(45). По аналогии:

P(A 10)=P(B 2)=P()P(B 2 |)=9/123/11=0,20(45);

P(A 00)=P(B 1 B 2)=P(B 1)P(B 2 |B 1)=3/122/11=0,041(6).

Подставим полученные значения вероятностей A 01, A 10 и A 00 в выражение для вероятности события A:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00)=3/129/11+9/123/11+3/122/11=0,45(45).

Ответ: вероятность того, что собранный усилитель будет неисправен, равна 0,4545.

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.

    Произведением, или пересечением, событий Л и В называют событие, состоящее в одновременном наступлении событий и Л, и В. Обозначение произведения АВ или Л и В.

    Например, двукратное попадание в цель есть произведение двух событий, ответ на оба вопроса билета на экзамене есть произведение двух событий.

    События Л и В называют несовместными, если их произведение - событие невозможное, т.е. ЛВ = V.

    Например, события Л - выпадение герба и В - выпадение цифры при однократном бросании монеты наступить одновременно не могут, их произведение - событие невозможное, события Л и В несовместные.

    Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию (рис. 6.4).

    Рис. 6.4. Геометрическая интерпретация произведения (а) и суммы (б) двух совместных событий

    Пусть событие Л - множество точек области Л, событие В - множество точек области В. Заштрихованная область соответствует событию ЛВ на рис. 6Ла и событию Л + В на рис. 6.46.

    Для несовместных событий Л и В имеем ЛВ = V (рис. 6.5а). Событию Л + В соответствует заштрихованная область на рис. 6.56.


    Рис. 6.5. Геометрическая интерпретация произведения (а ) и суммы (б) двух несовместных событий

    События А и А называют противоположными, если они несовместны и в сумме составляют достоверное событие, т.е.

    A A = V; A + A = U.

    Например, произведем один выстрел по цели: событие А - стрелок попал в цель, А - не попал; подброшена монета:

    событие А - выпадение орла, А - выпадение цифры; школьники пишут контрольную работу: событие А - ни одной

    ошибки в контрольной работе, А - есть ошибки в контрольной работе; студент пришел сдавать зачет: событие А - сдал

    зачет, А - не сдал зачет.

    В классе есть мальчики и девочки, отличники, хорошисты и троечники, изучающие английский и немецкий язык. Пусть событие М - мальчик, О - отличник, А - изучающий английский язык. Может ли случайно вышедший из класса ученик быть и мальчиком, и отличником, и изучающим английский язык? Это и будет произведение или пересечение событий МОА.

    Пример 6.15. Бросают игральный кубик - куб, сделанный из однородного материала, грани которого занумерованы. Наблюдают за числом (числом очков), выпадающим на верхней грани. Пусть событие А - появление нечетного числа, событие В - появление числа, кратного трем. Найти исходы, составляющие каждое из событий (?/, А, А + В У АВ) и указать их смысл.

    Решение. Исход - появление на верхней грани любого из чисел 1, 2, 3, 4, 5, 6. Множество всех исходов составляет пространство элементарных событий U = {1, 2, 3, 4, 5, 6}. Ясно, что событие А = {1, 3, 5}, событие В = {3, 6}.

    Событие А + В = {1, 3, 5, 6} - появление либо нечетного числа, либо числа, кратного трем. При перечислении исходов учтено, что каждый исход в множестве может содержаться только один раз.

    Событие АВ = {3} - появление и нечетного числа, и числа, кратного трем.

    Пример 6.16. Проверено домашнее задание у трех студентов. Пусть событие А { - выполнение задания i-м студентом, г = 1, 2, 3.

    Каков смысл событий: А = A t + А 2 + Л 3 , А и В = A t A 2 A 3 ?

    Решение. Событие А = А х + А 2 + А 3 - выполнение задания хотя бы одним студентом, т.е. или любым одним студентом (или первым, или вторым, или третьим), или любыми двумя, или всеми тремя.

    Событие А = А х -А 2 -А 3 - задание не выполнено ни одним студентом - ни первым, ни вторым, ни третьим. Событие В = А { А 2 А 3 - выполнение задания тремя студентами - и первым, и вторым, и третьим.

    При рассмотрении совместного наступления нескольких событий возможны случаи, когда появление одного из них сказывается на возможности появления другого. Например, если осенью день солнечный, то менее вероятно, что погода испортится (начнется дождь). Если же солнца не видно, то больше шансов, что пойдет дождь.

    Событие Л называется независимым от события В, если вероятность события А не меняется в зависимости от того, произошло или нет событие В. Иначе событие А называется зависимым от события В. Два события А и В называются независимыми, если вероятность одного из них не зависит от появления или непоявления другого, зависимыми - в противном случае. События называют попарно независимыми, если каждые два из них независимы друг от друга.

    Теорема умножения вероятностей формулируется следующим образом. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

    Эта теорема справедлива для любого конечного числа событий, если только они независимы в совокупности, т.е. вероятность любого из них не зависит от того, произошли или нет другие из этих событий.

    Пример 6.17. Студент сдает три экзамена. Вероятность успешной сдачи первого экзамена 0,9, второго - 0,65, третьего - 0,35. Найти вероятность того, что он не сдаст хотя бы один экзамен.

    Решение. Обозначим А событие - студент не сдал хотя бы один экзамен. Тогда Р(А ) = 1 - /-’(1/1), где А - противоположное событие - студент сдал все экзамены. Поскольку сдача каждого экзамена не зависит от других экзаменов, то Р{А) = 1 - Р(1/1) = = 1 - 0,9 0,65 0,35 = 0,7953.

    Вероятность события А, вычисленная при условии, что имеет место событие В, называется условной вероятностью события А при условии появления В и обозначается Р В (А) или Р(А/В).

    Теорема. Вероятность появления произведения двух событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло :

    Пример 6.18. Ученик дважды извлекает по одному билету из 34. Какова вероятность того, что он сдаст экзамен, если им подготовлено 30 билетов и в первый раз вынут неудачный билет?

    Решение. Пусть событие А состоит в том, что в первый раз достался неудачный билет, событие В - во второй раз вынут удачный билет. Тогда А? В - ученик сдаст экзамен (при указанных обстоятельствах). События А и В зависимы, так как вероятность выбора удачного билета со второй попытки зависит от исхода первого выбора. Поэтому используем формулу (6.6):

    Заметим, что полученная в решении вероятность «0,107. Почему так мала вероятность сдачи экзамена, если выучено 30 билетов из 34 и дается две попытки?!

    Расширенная теорема сложения формулируется следующим образом. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления (произведения):

    Пример 6.19. Два студента решают задачу. Вероятность того, что первый студент решит задачу (событие А), равна 0,9; вероятность того, что второй студент решит задачу (событие В), равна 0,8. Какова вероятность того, что задача будет решена?

    Решение. Нас интересует событие С, которое состоит в том, что задача будет решена, т.е. первым, или вторым студентом, или двумя студентами одновременно. Таким образом, интересующее пас событие С = А + В. События А и В совместны, значит применима теорема сложения вероятностей для случая совместных событий: Р(А + В) = Р(А) + Р(В) - Р(АВ). Для нашего случая Р(А + В) = = 0,9 + 0,8 + 0,9 0,8 = 0,98 (события А и В совместны, но независимы).

    Пример 6.20. Студент знает 20 вопросов из 25. Какова вероятность ответить на три вопроса из 25?

    Решение. Введем событие Л, - студент знает ответ на i -й предложенный вопрос, i = 1,2,3. События Л, Л 2 , Л 3 - зависимые. Поэтому

    При отыскании вероятностей событий использовалось классическое определение вероятности.

    Изучение теории вероятности начинается с решения задач на сложение и умножение вероятностей. Стоит сразу упомянуть, что студент при освоении данной области знаний может столкнуться с проблемой: если физические или химические процессы можно представить визуально и понять эмпирически, то уровень математической абстракции очень высок, и понимание здесь приходит только с опытом.

    Однако игра стоит свеч, ведь формулы - как рассматриваемые в данной статье, так и более сложные - используются сегодня повсеместно и вполне могут пригодиться в работе.

    Происхождение

    Как ни странно, толчком к развитию данного раздела математики стали… азартные игры. Действительно, игра в кости, бросание монетки, покер, рулетка - это типичные примеры, в которых используются сложение и умножение вероятностей. На примере задач в любом учебнике это можно увидеть наглядно. Людям было интересно узнать, как увеличить свои шансы на победу, и, надо сказать, некоторые в этом преуспели.

    Например, уже в XXI веке один человек, чьего имени раскрывать мы не будем, использовал эти накопленные веками знания, чтобы буквально «обчистить» казино, выиграв в рулетку несколько десятков миллионов долларов.

    Впрочем, несмотря на повышенный интерес к предмету, только к XX веку была разработана теоретическая база, делающая «теорвер» полноценной Сегодня же практически в любой науке можно встретить расчёты, использующие вероятностные методы.

    Применимость

    Важным моментом при использовании формул сложения и умножения вероятностей, условной вероятности является выполнимость центральной предельной теоремы. В противном случае хоть это и может и не осознаваться студентом, все вычисления, какими бы правдоподобными они ни казались, будут некорректны.

    Да, у высокомотивированного учащегося возникает соблазн использовать новые знания при каждом удобном случае. Но в данном случае следует несколько притормозить и строго очертить рамки применимости.

    Теория вероятности имеет дело со случайными событиями, которые в эмпирическом плане представляют собой результаты экспериментов: мы можем бросать кубик с шестью гранями, вытаскивать карту из колоды, предсказывать количество бракованных деталей в партии. Однако в некоторых вопросах использовать формулы из этого раздела математики категорически нельзя. Особенности рассмотрения вероятностей события, теорем сложения и умножения событий мы обсудим в конце статьи, а пока обратимся к примерам.

    Основные понятия

    Под случайным событием подразумевается некоторый процесс или результат, который может проявиться, а может и не проявиться в результате эксперимента. Например, мы подбрасываем бутерброд - он может упасть маслом вверх или маслом вниз. Любой из двух исходов будет являться случайным, и мы заранее не знаем, какой из них будет иметь место.

    При изучении сложения и умножения вероятностей нам понадобятся ещё два понятия.

    Совместными называются такие события, появление одного из которых не исключает появления другого. Скажем, два человека одновременно стреляют по мишени. Если один из них произведет успешный никак не отразится на возможности второго попасть в «яблочко» или промахнуться.

    Несовместными будут такие события, появление которых одновременно является невозможным. Например, вытаскивая из коробки только один шарик, нельзя достать сразу и синий, и красный.

    Обозначение

    Понятие вероятности обозначается латинской заглавной буквой P. Далее в скобках следуют аргументы, обозначающие некоторые события.

    В формулах теоремы сложения, условной вероятности, теоремы умножения вы увидите в скобках выражения, например: A+B, AB или A|B. Рассчитываться они будут различными способами, к ним мы сейчас и обратимся.

    Сложение

    Рассмотрим случаи, в которых используются формулы сложения и умножения вероятностей.

    Для несовместных событий актуальна самая простая формула сложения: вероятность любого из случайных исходов будет равна сумме вероятностей каждого из этих исходов.

    Предположим, что есть коробка с 2 синими, 3 красными и 5 жёлтыми шариками. Итого в коробке имеется 10 предметов. Какова доля истинности утверждения, что мы вытащим синий или красный шар? Она будет равна 2/10 + 3/10, т. е. пятьдесят процентов.

    В случае же несовместных событий формула усложняется, поскольку добавляется дополнительное слагаемое. Вернемся к нему через один абзац, после рассмотрения ещё одной формулы.

    Умножение

    Сложение и умножение вероятностей независимых событий используются в разных случаях. Если по условию эксперимента нас устраивает любой из двух возможных исходов, мы посчитаем сумму; если же мы хотим получить два некоторых исхода друг за другом, мы прибегнем к использованию другой формулы.

    Возвращаясь к примеру из предыдущего раздела, мы хотим вытащить сначала синий шарик, а затем - красный. Первое число нам известно - это 2/10. Что происходит дальше? Шаров остается 9, красных среди них всё столько же - три штуки. Согласно расчётам получится 3/9 или 1/3. Но что теперь делать с двумя числами? Правильный ответ - перемножать, чтобы получилось 2/30.

    Совместные события

    Теперь можно вновь обратиться к формуле суммы для совместных событий. Для чего мы отвлекались от темы? Чтобы узнать, как перемножаются вероятности. Сейчас нам это знание пригодится.

    Мы уже знаем, какими будут первые два слагаемых (такие же, как и в рассмотренной ранее формуле сложения), теперь же потребуется вычесть произведение вероятностей, которое мы только что научились рассчитывать. Для наглядности напишем формулу: P(A+B) = P(A) + P(B) - P(AB). Получается, что в одном выражении используется и сложение, и умножение вероятностей.

    Допустим, мы должны решить любую из двух задач, чтобы получить зачёт. Первую мы можем решить с вероятностью 0,3, а вторую - 0,6. Решение: 0,3 + 0,6 - 0,18 = 0,72. Заметьте, просто просуммировать числа здесь будет недостаточно.

    Условная вероятность

    Наконец, существует понятие условной вероятности, аргументы которой обозначаются в скобках и разделяются вертикальной чертой. Запись P(A|B) читается следующим образом: «вероятность события A при условии события B».

    Посмотрим пример: друг дает вам некоторый прибор, пусть это будет телефон. Он может быть сломан (20 %) или исправен (80 %). Любой попавший в руки прибор вы в состоянии починить с вероятностью 0,4 либо не в состоянии этого сделать (0,6). Наконец, если прибор находится в рабочем состоянии, вы можете дозвониться до нужного человека с вероятностью 0,7.

    Легко заметить, как в данном случае проявляется условная вероятность: вы не сможете дозвониться до человека, если телефон сломан, а если он исправен, вам не требуется его чинить. Таким образом, чтобы получить какие-либо результаты на «втором уровне», нужно узнать, какое событие выполнилось на первом.

    Расчёты

    Рассмотрим примеры решения задач на сложение и умножение вероятностей, воспользовавшись данными из предыдущего абзаца.

    Для начала найдем вероятность того, что вы почините отданный вам аппарат. Для этого, во-первых, он должен быть неисправен, а во-вторых, вы должны справиться с починкой. Это типичная задача с использованием умножения: получаем 0,2*0,4 = 0,08.

    Какова вероятность, что вы сразу дозвонитесь до нужного человека? Проще простого: 0,8*0,7 = 0,56. В этом случае вы обнаружили, что телефон исправен и успешно совершили звонок.

    Наконец, рассмотрим такой вариант: вы получили сломанный телефон, починили его, после чего набрали номер, и человек на противоположном конце взял трубку. Здесь уже требуется перемножение трёх составляющих: 0,2*0,4*0,7 = 0,056.

    А что делать, если у вас сразу два нерабочих телефона? С какой вероятностью вы почините хотя бы один из них? на сложение и умножение вероятностей, поскольку используются совместные события. Решение: 0,4 + 0,4 - 0,4*0,4 = 0,8 - 0,16 = 0,64. Таким образом, если вам в руки попадёт два сломанных аппарата, вы справитесь с починкой в 64% случаев.

    Внимательное использование

    Как говорилось в начале статьи, использование теории вероятности должно быть обдуманным и осознанным.

    Чем больше серия экспериментов, тем ближе подходит теоретически предсказываемое значение к полученному на практике. Например, мы бросаем монетку. Теоретически, зная о существовании формул сложения и умножения вероятностей, мы можем предсказать, сколько раз выпадет «орёл» и «решка», если мы проведем эксперимент 10 раз. Мы провели эксперимент, и по стечению обстоятельств соотношение выпавших сторон составило 3 к 7. Но если провести серию из 100, 1000 и более попыток, окажется, что график распределения всё ближе подбирается к теоретическому: 44 к 56, 482 к 518 и так далее.

    А теперь представьте, что данный эксперимент проводится не с монеткой, а с производством какого-нибудь новейшего химического вещества, вероятности получения которого мы не знаем. Мы провели бы 10 экспериментов и, не получив успешного результата, могли бы обобщить: «вещество получить невозможно». Но кто знает, проведи мы одиннадцатую попытку - достигли бы мы цели или нет?

    Таким образом, если вы обращаетесь к неизведанному, к неисследованной области, теория вероятности может оказаться неприменима. Каждая последующая попытка в этом случае может оказаться успешной и обобщения типа «X не существует» или «X является невозможным» будут преждевременны.

    Заключительное слово

    Итак, мы рассмотрели два вида сложения, умножение и условные вероятности. При дальнейшем изучении данной области необходимо научиться различать ситуации, когда используется каждая конкретная формула. Кроме того, нужно представлять, применимы ли вообще вероятностные методы при решении вашей задачи.

    Если вы будете практиковаться, то через некоторое время начнете осуществлять все требуемые операции исключительно в уме. Для тех, кто увлекается карточными играми, этот навык можно считать крайне ценным - вы значительно увеличите свои шансы на победу, всего лишь рассчитывая вероятность выпадения той или иной карты или масти. Впрочем, полученным знаниям вы без труда найдете применение и в других сферах деятельности.

  • Поделиться