С точки зрения космологии вселенная представляет собой. Космология - это раздел астрономии. Космология: определение, история и этапы. Чем дальше, тем быстрее

Космология - это комплексное рассмотрение нашей Вселенной с научной и философской точки зрения. Ее зарождение началось ещё во времена древних людей. Они очень увлекались мифами, поклонению богам, первым изучением звёзд и т. д. Благодаря древним людям мы узнали о существовании первых планет. В основе изучения космологии лежит сопоставление физических свойств Вселенной.

Понятие космологии с точки зрения науки

Космология - это наука, которая объединяет астрофизику и астрономию. Данные для нее получают путем наблюдения за астрономическими изменениями во Вселенной. Для этого применяются законы относительности, которые были приняты ещё самим Альбертом Эйнштейном. Уже в 20-х годах XX века эта наука была отнесена к классу точных, до этого она считалась частью философских учений. Современная космология на сегодняшний день становится очень популярной. Она объединяет в себе новые открытия в сфере физики, астрономии, астрологии и философии. Последним достижением является так называемая теория Большого взрыва, согласно которой наша Вселенная меняется в своих размерах из-за высокой плотности и температуры.

Исторические аспекты становления данной науки

Ещё в начале XX века, перед тем как заявить о своем открытии, учёный должен был не только теоретически, но и практически доказать уникальность результатов. Но вернемся в древние века, когда люди только начинали делать свои первые шаги в астрономии. Ещё в Древнем Египте, Китае, Индии, Греции ученые занимались наблюдением за небесными явлениями. Благодаря этому был создан лунный календарь, по которому очень длительное время ориентировались жители Земли.

Античная космология была основана на различных мифах и легендах. Аристотель был основателем теории гомоцентрических сфер: наша планета лежит на поверхности полой сферы, центр которой является центром Земли. Именно поэтому тогда была очень популярна модель божественного происхождения Земли. В дальнейшем происходило изменение учений с каждым последующим веком. Древние физики утверждали, что вокруг Земли происходит движение планет, а сама она находится непосредственно в центре самой Вселенной. Однако все это было лишь теорией, практических подтверждений на тот момент не было.

Современное развитие космологии как науки

Лишь в XV веке Николаю Копернику удалось обобщить все существовавшие на тот момент знания. Согласно его теории, в центре нашей Вселенной находится Солнце, вокруг которого постоянно движутся планеты, в том числе и Земля с Луной. В основу своей теории Коперник положил утверждения таких учёных, как Аристарх Самосский, Леонардо да Винчи, Гераклит и Кузо.

Ещё один большой шаг в развитии этой науки был сделан Кеплером. Он создал свои известные три теории, которые в дальнейшем использовал Исаак Ньютон для своих законов динамики. Именно благодаря этим законам люди увидели абсолютно другой подход к движению планет во Вселенной. Таким образом, можно сделать вывод, что космология и физика были очень тесно связаны между собой. Космология кратко дает общие понятия процессов, происходящих в нашей Вселенной.

Основные концептуальные взгляды космологии

Ещё древние люди искали ответ на вопрос: "Какое место наш окружающий мир занимает в самой Вселенной?" В Библии было написано, что наша Вселенная в самом начале была абсолютно невидимой и непримечательной. Эйнштейн утверждал, что Вселенная не движется и находится в стационарном положении. Однако позднее ученый Фридман доказал, что за счёт определенного движения происходит ее постепенное сужение и расширение. С помощью результатов исследований, полученных астрономом Хабблом, были с точностью измерены расстояния до галактик. Именно благодаря его открытиям и возникла так называемая теория Большого взрыва.

Основы теории Большого взрыва

Согласно ее положениям, начинать отсчет возраста Вселенной нужно с момента ядерного взрыва. Таким образом, ученые получили результат в 13 млрд лет. На сегодняшний день положения астрофизики для космологии имеют только теоретический аспект. В первые секунды после Большого взрыва произошло развитие частиц под названием "кванты", затем спустя время стали появляться кварки, которые имели разные виды взаимодействий. Лишь спустя 0,01 с после взрыва начали свое развитие различные звёзды, галактики и собственно сама Солнечная система.

Что изучает космология?

Это наука, которая объединяет знания по физике, математике, астрономии и философии. Космология изучает Вселенную как одно целое. В её основе лежит изучение появления всех небесных тел (планеты, Солнце, Луна, метеориты и т. д.), а также звездных скоплений. Теоретические утверждения космологии почерпнуты из астрономии, в некоторых случаях даже из геологии, а практические - из физики.

Понятие Вселенной в космологии

Исходя из утверждений ученых, Вселенная состоит из определенных структур: галактик, звёзд и планет. Каждая из них прошла определенную эволюцию:

  • прототипом галактик в древние времена были протогалактики;
  • для звезд это протозвёзды;
  • для планет - протопланетные облачные образования.

Самой изученной частью на данный момент является метагалактика. Это объединение большого числа галактик, которые находятся в поле зрения астронавтов. Их распределение неравномерно, что экспериментально доказано в астрономии. На сегодняшний день учёные занимаются изучением большого пространства, в котором абсолютно отсутствуют галактики. По возрасту метагалактика приближена к Вселенной.

Сама по себе галактика с точки зрения астрономии - это совокупность звёзд, туманных образований, которые со временем объединяются в достаточно плотную структуру. Они бывают различных форм и размеров. Самой известной из них считается Млечный путь, который может видеть каждый из обитателей Земли. Также в состав галактик входит газ и космическая пыль. Звёзды совершенно разные по возрасту: одни из них могут быть возрастом, как сама Вселенная, другие могут только родиться. Их зарождение происходит при воздействии гравитации, магнитной и других сил.

Таким образом, можно сделать вывод, что космология Вселенной на сегодняшний день обладает очень многими знаниями, однако в тоже время таит в себе много загадок. разгадать которые под стать только самым гениальным учёным.

Проблемы теории Большого взрыва

Космология - это относительно молодая наука. Она стала существовать отдельно лишь с середины XX века. Её основные доводы экспериментально доказаны благодаря учёным из области астрономии, которые вели наблюдения за нашей Вселенной. Космология - это постоянно развивающаяся наука, она не стоит на месте. Те теоретические данные, которые были выдвинуты несколько десятилетий назад, уже получили экспериментальное подтверждение или опровержение.

Например, во времена учений Эйнштейна и Фридмана плотность Вселенной могла иметь любое значение. Сегодня научно доказано, что эта величина составляет критическое значение р кр. Таких примеров можно привести огромное количество.

Существует ряд основных проблем космологии, которые остаются актуальными на сегодняшний день:

  • плоскость Вселенной;
  • горизонт Вселенной (выглядит идентично с разных направлений);
  • откуда возникли гравитационные уплотнения, в результате которых образовались галактики;
  • из каких именно веществ на самом деле состоит наша Вселенная;
  • согласно теории квантовой гравитации космологическая постоянная должна быть выше в 120 раз;
  • как между собой согласуются время жизни Вселенной и звезд.

Различие между астрономией и космологией

  1. Космология - это наука о Вселенной как едином целом, астрономия же изучает лишь звёздные тела.
  2. Астрономия возникла у древних людей намного раньше, они ориентировались только по звёздам, поклонялись древним богам и т. д.
  3. Космология объединяет знания из астрофизики, физики, философии, геологии, космогонии и астрономии.
  4. В космологии ученые не привязывают свои теории к конкретным планетам, а трактуют их как бы обобщенно.
  5. Астрономия не полагается практически ни на один закон физики, в то время как в основе космологии лежат многие физические утверждения.
  6. Космология, в отличие от астрологии, не относится к строгим наукам. Ряд её предположений не несет никакого практического подтверждения.
  7. Астрономия включает в себя наблюдения за космическими явлениями, в то время как космология находит объяснения для каждого из них.

Однако даже на сегодняшний день многие ученые считают, что космология является частью астрономии и не относят её к отдельным направлениям.

В современной науке сделано много открытий, которые позволяют расширить знания о нашей Вселенной. Некоторые из теорий подтверждены учеными мира экспериментально. Однако остается ещё много задач, которые требует тщательного изучения и материальной базы. Даже сегодня не существует единого мнения, что собой представляет Вселенная, из какого вещества она состоит. Это и является одним из заданий учёных в области не только космологии, но и сопутствующих ей наук. Знания об окружающем нас мире растут в геометрической прогрессии, но наряду с ними появляется все больше дополнительных вопросов. Для космологии это можно считать нормальным путём развития и становления как отдельной науки.

Человек с давних пор интересовался устройством Вселенной. Звезды притягивали к себе наших предков, заставляли смотреть на них с удивлением и трепетом. Физика добилась больших успехов в изучении макроскопических и микроскопических свойств природы, однако, понимание и объяснение свойств Вселенной в целом происходило не так уверенно. Извечные вопросы, которые всегда волновали человечество, во многом не разрешены до сих пор. Как возникли звезды, планеты, вся Вселенная? Как развивалась эта Вселенная в прошлом, куда движется в настоящем и что ее ждет в будущем? На некоторые вопросы мы может ответить сейчас, другие ждут своего ответа. Но каждый шаг вперед ставит также и новые вопросы, раздвигая области неведомого. Сколько вещества во Вселенной? Существуют ли во Вселенной другие виды материи? Неизвестна природа странных объектов, излучающих фантастическое количество энергии из дальнего Космоса. И так далее...

Тем не менее, к настоящему времени сложились определенные научные представления о происхождении и эволюции Вселенной. Следует сразу отметить, что одним из основных затруднений при изучении астрономических и космологических событий является то, что над изучаемым объектом нельзя провести контрольного эксперимента. Мы можем наблюдать лишь естественный ход событий. Поэтому, можно сказать, поразительным является не безграничное разнообразие наблюдаемых астрономических событий, а возможность, анализируя эти явления, делать выводы относительно эволюции звезд и галактик на протяжении миллиардов лет.

Остановимся на физических основаниях космологии и астрофизики. Предметом космологии является изучение строения, происхождения и эволюции Вселенной как целого. Поэтому космология связана с общей теорией относительности (ОТО), поскольку во Вселенной приходится иметь дело с большими расстояниями, высокими скоростями и огромными массами.

Первая современная космологическая теория была предложена Эйнштейном в 1917 г. в качестве следствия его формулировки ОТО. Эйнштейн показал, что ОТО однозначно объясняет возможность существования статической вселенной, которая не изменяется со временем. Как мы сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех ОТО. Этот парадокс, по-видимому, был связан с тем, что еще из представлений ученых древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейна как будто подтвердила это. Однако уже в 1922 г. наш соотечественник А. Фридман показал, что из самих уравнений общей теории относительности следует нестационарность, т.е. развитие Вселенной Он утверждал, что искривленное пространство не должно быть стационарным, оно должно или расширяться, или сжиматься. И Эйнштейн вынужден был публично согласиться с выводами Фридмана. К сожалению, работы Фридмана, в частности его книга «Мир как пространство и время», были подвергнуты умолчанию вплоть до настоящего времени. Его работы не переиздавались и не пропагандировались, а автором теории расширяющейся Вселенной объявляется аббат Ж. Леметр, президент Папской академии наук в Ватикане. В значительной мере это связано с идеологической кампанией против «физического идеализма», развернутой в СССР в 30-50-е годы . Стационарная, бесконечная в пространстве и времени Вселенная фигурировала и в философии Канта, Гегеля и Энгельса и была «узаконена» Марксистско-Ленинской философией. Все другие представления были объявлены ошибочными и лженаучными, в том числе и сама теория относительности А. Эйнштейна.

И действительно через какое-то время была создана теория расширяющейся Вселенной, причем она была подтверждена экспериментально. Из телескопических наблюдений звезд было установлено, что кроме нашей Галактики, звездного скопления в виде Млечного пути, существует огромное количество других галактик. Как мы уже указывали в главе 1.4 по красному смещению, точнее смещению световых лучей к красному концу видимого спектра, можно определить движение объекта относительно наблюдателя. В более общем виде - это так называемый эффект Доплера при распространении волны любой природы и движении источника этой волны относительно наблюдателя. Например, звуковой сигнал движущегося поезда относительно неподвижного наблюдателя на платформе будет выше, когда поезд приближается к нему, и ниже, когда удаляется. Так вот, экспериментально наблюдались и измерялись радиальные движения (от нас или к нам) отдельных звезд, а затем и галактик методом эффекта Доплера. Было установлено, что если звезда движется к нам, то спектральные линии смещаются к фиолетовому концу спектра, если от нас - то к красному концу.

При анализе изучения далекий галактик получился удивительный результат: у всех галактик наблюдается красное смещение! Поэтому можно считать, что они удаляются от нас. Причем величина этого красного смещения и, следовательно, скорость разбегания галактик больше для более удаленных галактик (что само по себе чрезвычайно удивительно и до сих пор причина этого не выяснена):

где S - лучевая скорость, r - расстояние до объекта, Н - постоянная Хаббла, равная ~(3 - 5)×10 -18 c -1 и названная так в честь Э. Хаббла, который в 1929 г. экспериментально подтвердил расширение Вселенной. Из Н можно определить возраст Вселенной (t ~ 1/H), который оценивается 10-20 миллиардов лет. В 1997 г. появились данные измерений расстояния до галактики Н100 в созвездии Девы, что Н больше, чем предполагалось, и тогда возраст вселенной составит 8 миллиардов лет. Кстати по данным радиоактивного распада некоторых веществ возраст Земли определяется в 5 миллиардов лет.

Если все галактики удаляются от нас, то возникает вопрос: не занимаем ли мы особого положения во Вселенной? Простой физический опыт не дает оснований полагать, что это так. Предположим, что мы надуваем воздушный шарик, на поверхности которого равномерно нанесены пятнышки. По мере того как шарик будет раздуваться, наблюдателю, находящемуся на одном из пятнышек, будет казаться, что все другие пятнышки удаляются от него. Более того. ему будет казаться, что более далекие пятнышки удаляются значительно быстрее, чем те которые расположены близко. Такие же результаты получаются, естественно, при наблюдении из любого другого пятнышка. Таким образом, при однородном расширении будут увеличиваться все расстояния между пятнышками. Поэтому изменение красного смещения обычно трактуется как очевидное доказательство, что Вселенная расширяется. Так как расширение, по-видимому, происходит равномерно во все стороны, то «центра» Вселенной явно выделить нельзя. Естественно остается много вопросов: почему Вселенная расширяется, будет ли она расширяться дальше или сожмется? Конечна она или бесконечна? Как образуются галактики, из чего состоят? И т.д.

Не останавливаясь подробно здесь на других ранних моделях, напомню все же, что в историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой была неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Аристарх Самосский в III веке до нашей эры предложил гелиоцентрическую систему, возрожденную польским священником Коперником в 1514 г. Сюда же можно отнести и античную систему Птоломея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и Кеплер (эллиптические орбиты вместо круговых) и Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII веке. Уже в это время (а идеи Джордано Бруно еще ранее - XVI век) возникли представления о бесконечной Вселенной. В XIX веке они развились в представления Платона о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейна.

Предполагалось, что пространство - абсолютно, однородно и изотропно, а время - абсолютно и однородно, т.е. использовались строительные материалы классической механики и евклидовой геометрии. Это, кстати, устраивало теологический подход к пониманию мира: система мира без начала и конца, как в пространственном так и во временном понимании. Бог создал и все! Кстати, с материалистической точки зрения можно предположить, что теологии - это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялись как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Выражаясь на гуманитарном языке, можно сказать - оставались «равнодушными» на такой сцене жизни. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла согласно как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм). Как мы уже знаем, в СТО и ОТО Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой, причем скорость передачи взаимодействия конечна и равна скорости света с. Было показано, что геометрия пространства и времени не является евклидовой и определяется наличием материи в данной области. Пространство и время приобретают динамические свойства, им приписывается кривизна, которая влияет на характер движения тел в данной области и которая сама зависит от наличия и движения тел. Пространство и время - уже не «равнодушная» сцена событий, а активные участники, влияющие на события, регулирующие их.

В настоящее время существует много космологических теорий, и нельзя, естественно, сказать, что уже установлена истина в последней инстанции, учитывая еще указанную сложность астрофизических и космологических экспериментов. Однако одна из современных таких теорий - теория Большого взрыва (Big Bang) - смогла к настоящему времени объяснить почти все факты, связанные с космологией.

В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 10 миллиардов лет тому назад, когда все вещество и вся энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 10 25 г/см 3 и температурой свыше 10 16 К. Такое представление соответствует модели горячей Вселенной. Модель Большого Взрыва (БВ) была предложена в 1948 г. нашим соотечественником Г. Гамовым. В свое время Г. Гамов, блестящий теоретик (учился в ЛГУ вместе с Л. Ландау, Н. Козыревым), до войны был самым молодым членом-корреспондентом АН СССР, затем эмигрировал на Запад и по сему поводу, естественно, до последнего времени замалчивался советской официальной наукой. В то же время ему принадлежат по крайней мере три научных результата «нобелевского ранга»: модель БВ, предсказание температуры реликтового излучения и генетического кода ДНК. Кроме того он был отличным популяризатором науки и опубликовал более 20 прекрасных научных книг.

В то же время неизвестно достоверно - как этот сгусток образовался. Из чего? И откуда взялось такое гигантское количество изначальной энергии? Тем не менее, огромное радиационное давление внутри этого сгустка привело к необычайно быстрому его расширению - Большому Взрыву. Составные части этого сгустка, разлетевшиеся с максимальными относительными скоростями, теперь образуют далекие галактики, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какие они были примерно 2 ×10 9 лет тому назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва (ТБВ). Заметим здесь, что открытие расширяющейся Вселенной и принятие научным сообществом этого факта можно считать огромным мировоззренческим прорывом в интеллектуальном мире.

Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций в первые моменты после БВ. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но в результате их могло быть образование лишь гелия. Спектр гелия наблюдался в солнечном излучении до того, как он был обнаружен на Земле, отсюда и название этого элемента от греческого Гелиос - Солнце. Современные методы анализа излучения звезд и галактик показали, что почти все они состоят из водорода - (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звездах, остальное количество распределено в межзвездном пространстве. В звездах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную плазму. В межзвездном пространстве водород и гелий находятся в основном в атомарном состоянии. Таким образом теория БВ согласуется с наблюдаемой распространенностью гелия во Вселенной.

Рассмотрим варианты объяснения образования сгустка. Предполагается, что эти межзвездные атомы водорода и гелия служат сырьем для образования новых звезд. Заметим, что распределение газа в межзвездном пространстве неоднородно. Средняя концентрация вещества в нашей Галактике ~ 1 атом/см 3 , однако имеются сильные флуктуации. Эти флуктуации плотности объясняются хаотическим движением атомов в пространстве. Случайно плотность вещества в определенной области может существенно превысить среднюю. При этом предполагается, что если количество вещества превысит в какой-либо области критическое значение, порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлету газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвездной пыли сгустка, гигантское уплотнение и взрыв.

Наиболее важным подтверждением теории БВ является обнаружение реликтового излучения (РИ), как раз и связанного, по-видимому, с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввел наш астрофизик И. Шкловский. Первоначально это излучение представляло собой лучи, которые обладали огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия фотонов уменьшилась, т.е. возросла длина их волны. Это излучение и сейчас существует во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. Г. Гамов как раз и рассчитал температуру реликтового излучения. По расчетам она составляет 3К, согласно современным данным 2,7 К.

Рассматривая такой сгусток вещества и излучения, мы должны понимать, что его нельзя рассматривать как бы со стороны, с далекого расстояния, и считать, что он расширяется по направлению к нам (или от нас). Сгусток есть ни что иное как сама Вселенная, и Земля находится внутри нее. Внутри же сгустка при расширении его все остальное вещество во Вселенной движется в направлении от Земли (вспомним шарик с пятнышками), или от любого куска вещества в сгустке. Поэтому излучение сгустка бомбардирует Землю со всех сторон. Любой наблюдатель во Вселенной должен регистрировать это излучение с равной интенсивностью с любого направления в пространстве.

Так как расширение продолжается ~10 10 лет, то огромная начальная температура уменьшилась согласно теории, к настоящему времени до средней температуры Вселенной порядка 3 К. Максимум в распределении длин волн, соответствующий излучению источника с такой температурой в 3К, должен приходиться на длину волны 0,1 см. Это означает, что если теория БВ верна, то должны экспериментально наблюдаться два эффекта: спектр излучения Вселенной должен соответствовать равновесному излучению при 3К и это излучение должно приходить с равной интенсивностью с любого направления в пространстве, т.е. быть изотропным. Начиная с 1965 г. проводились многочисленные измерения, обнаружившие космические радиоволны с малой энергией, которые можно интерпретировать как равновесное излучение остывшего, но все еще расширяющегося сгустка, причем с длиной волны, соответствующей Т = 3К. Таким образом, получены некоторые экспериментальные доказательства справедливости теории БВ.

Если считать, что эксперименты подтверждают нынешнее расширение Вселенной, то будет ли она продолжать расширяться и дальше? ОТО предполагает следующий ответ на этот вопрос. Считается, что существует некая критическая масса Вселенной. Если действительная масса Вселенной меньше критической, гравитационного притяжения вещества во Вселенной будет недостаточно, чтобы остановить это расширение, и оно будет идти и дальше. Если же действительная реальная масса больше критической, то гравитационное притяжение в конце концов замедлит расширение, приостановит его и затем приведет к сжатию. В этом случае Вселенную ожидает коллапс, в результате которого вновь образуется сгусток. Тем самым готовы условия для нового Большого взрыва и последующего потом расширения. Следовательно, Вселенная может пульсировать между состояниями максимального расширения и коллапса. Это и есть модель пульсирующей Вселенной.

Что дают эксперименты? Они, конечно, очень не простые, скорее оценочные, так как кроме определения массы Вселенной в виде вещества и энергии в звездах, галактической пыли и газе необходимо учитывать вещество и в межгалактическом пространстве. А вот с этим как раз большая неопределенность. Прямые эксперименты затруднены тем, что межгалактический водород почти полностью ионизирован излучением галактик и квазизвездных объектов (квазаров). Поэтому для регистрации ионизированного водорода необходимы рентгеновские методы измерения и вне пределов атмосферы Земли, чтобы избежать поглощения. Как показывают измерения с помощью ракет и спутников, а также предварительные расчеты, полная масса Вселенной с учетом межгалактического вещества значительно превышает критическую. Это означает, что модель пульсирующей Вселенной как будто подтверждается. Получается, что мы живем в такой вселенной, которая взрывается, расширяется и снова сжимается примерно каждые 80 миллиардов лет.

Рассмотрим, каким предполагается поведение горячей Вселенной, расширяющейся после своих родов во время Большого Взрыва. Известный наш теоретик, занимавшийся в том числе и астрофизикой, Я.Б. Зельдович заметил, что теория БВ в настоящий момент не имеет сколько-нибудь заметных недостатков. Она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени и обе они имели много противников, утверждавших, что новые идеи, изложенные в них, абсурдны и противоречат здравому смыслу. Однако вспомним определение Эйнштейном здравого смысла!

Успех модели расширяющейся Вселенной связан не только с экспериментальными подтверждениями, о которых мы говорили ранее, но и с тем, что, как оказалось, физикой микромира, в том числе физикой элементарных частиц, можно непротиворечиво объяснить поведение «ранней» Вселенной, причем, как это не парадоксально звучит, буквально по долям микросекунд (и даже более того, отсчет идет от 10 -43 с). Поэтому в этом разделе рассмотрим кратко и имеющиеся представления о физике элементарных частиц. Вообще же, по существу сейчас возникла новая наука - космомикрофизика. В космомикрофизике объединяются не только космологические модели Большого Взрыва, расширяющейся и пульсирующей Вселенной, а также и строение материи в виде элементарных частиц и понятия устойчивости-неустойчивости материи, ее симметрии-асимметрии, самоорганизации и эволюции. Модель горячей Вселенной описывает ее как «котел кипящих элементарных частиц».

Каков же сценарий, как любят говорить космологи, развития событий по модели БВ и горячей Вселенной? Сразу после БВ Вселенная представляла собой огненный шар из элементарных частиц и фотонов (свет) огромных энергий со взаимными превращениями. Дальше Вселенная стала расширяться с уменьшением плотности и температуры. При предполагаемых громадных плотностях (~10 25 г/см 3) и температурах (~10 16 К) вещество состоит только из элементарных частиц - протонов и нейтронов. Частицы движутся так быстро, что при столкновениях образуются парами новые частицы (частица- античастица). Вообще говоря, чем выше температура Вселенной, тем более тяжелые частицы могут рождаться при столкновениях. В этой модели поведения Вселенной можно установить взаимосвязь между плотностью, температурой и временем жизни вселенной:

, (1.6.2)

где r - среднее значение плотности материи во Вселенной в момент времени t (с) от начала расширения;

Предполагается, что качественный состав элементарных частиц, образующих новую Вселенную меняется при ее расширении. Когда Вселенной «исполнилось» 10 -43 с, все фундаментальные взаимодействия в природе были объединены и имели одинаковую интенсивность. Через 10 -23 с наступило время тяжелых частиц, точнее того, из чего они состоят, - кварков. В это время вся Вселенная состояла из кварков и антикварков. По мере уменьшения температуры и с ростом времени уменьшалось число пар этих тяжелых частиц и за счет аннигиляции они быстро исчезали. Далее еще через 10 -2 с после БВ наступает время легких частиц. Вселенная как бы «омолодилась» и практически состояла из легких частиц - лептонов и излучения ( фотонов). Еще дальше во времени (~1 - 20 c) Вселенная, расширяясь дальше, теряет и эти частицы. При аннигиляции они превращаются в фотоны. Фотонам же не хватает энергии, чтобы образовать электрон-позитронную пару, и поэтому излучение преобладает над частицами.

Через ~100 с жизни Вселенной ее температура упала до 109 К и скорости оставшихся протонов уменьшились настолько, что за счет ядерных сил притяжения они начинают соединяться в ядра легких элементов, в основном гелия, затем лития и бериллия. По прошествии нескольких часов после ВВ образование этих ядер закончилось. Этот период эволюции называется временем нуклеосинтеза. А дальше счет пошел уже на миллионы лет. Вселенная продолжала расширяться и охлаждаться. При этом энергии фотонов были значительно больше сил связи электронов и ядер, и поэтому атомы пока не могли образоваться. Затем при уменьшении температуры до 3000 К энергия электромагнитного притяжения ядра и электрона становится больше энергии фотонов и тогда начинают образовываться атомы водорода и гелия. Фотоны перестали взаимодействовать с веществом, как говорят космологи, Вселенная стала прозрачной. Предполагается, что с тех дальних времен до наших дней эти фотоны (это излучение) заполняют нашу Вселенную. За это время температура упала с 3000 К до 3 К в наше время. Это и есть реликтовое излучение, о котором мы уже говорили. Таким образом РИ несет нам информацию о молодой Вселенной, когда ей исполнилось «всего» 1 миллион лет. Теперь в рамках модели расширяющейся Вселенной можно построить схему физической истории Вселенной (рис.
).

В начальный период времени прозрачная Вселенная была однородным «бульоном» из элементарных частиц, ядер, атомов и фотонов. Затем флуктуационно возникали области, где плотность материи несколько выше. Это, в свою очередь, привело к увеличению гравитационного притяжения в этих областях, а значит к отставанию этих областей от общего темпа расширения Вселенной. Атомы и частицы в этих областях испытывали большое число столкновений (объем-то уменьшился!), газ разогревался, шли термоядерные реакции. Давление внутри области возрастало, область перестала сжиматься.

Заметим, что хотя теория или модель БВ в целом оправдывает доверие научного мира, но все же некоторые вещи она объяснить не может. Так, она не может объяснить конкретную причину БВ, причину «первотолчка». Кроме того, почему мощность взрыва была именно такой, какой была, не больше и не меньше. И скорость разлета, и плотность вещества очень близки к критическим значением. Теория не может также объяснить причину крупномасштабной однородности Вселенной, но одновременно в меньших масштабах допускает наличие в прошлом отклонений от однородности, которые и привели впоследствии к возникновению галактик. При этом предполагается, что расширение происходит с большой степенью однородности и изотропности, а удаленные друг от друга неоднородности причинно между собой не связаны.

Частично эти вопросы снимает еще одна современная модель - сценарий раздувающейся Вселенной (РВ). Это модель хаотического раздувания в период времени от 10 -43 до 10 -32 с, и связана она с понятием вакуума. Согласно этим идеям, Вселенная начала свою жизнь из состояния вакуума, лишенного вещества и излучения. Заметим, что проблема вакуума сейчас становится одной из центральных в физике.

По современным представлениям вакуум - особый тип физической реальности, наиболее фундаментальное состояние материи, особое «ничто», скрытое бытие, содержащее в потенции всевозможные частицы и при сообщении энергии этому вакууму из него можно извлечь любые частицы и объекты, в том числе не только нашу Вселенную, но и другие вселенные. В этой модели предполагается, что Вселенная родилась 15-18 миллиардов лет тому назад из вакуума путем спонтанного (самопроизвольного) нарушения его симметрии. Получается, что Вселенная как бы самозародилась. Конечно, это выглядит несколько парадоксально: чем не Божественное сотворение Мира?

Вот что говорил по этому поводу упомянутый уже нами Я.Б. Зельдович: «Понятие классической космологической сингулярности должно быть существенным образом заменено квантово-гравитационным процессом, описывающим рождение нашего мира. Предполагается, что в начальном состоянии не было ничего, кроме вакуумных колебаний всех физических полей, включая гравитационное. Поскольку понятия пространства и времени являются существенно классическими, то в начальном состоянии не было реальных частиц, реального метрического пространства и времени. Считаем, что в результате квантовой флуктуации и образовалась трехмерная геометрия... Кроме того, на этой стадии из вакуумных флуктуаций негравитационных полей рождаются флуктуации плотности вещества, которые значительно позже, в близкую нам эпоху, приводят к образованию скоплений галактик, нашей Галактики, звезд и в конечном итоге планет и самой жизни».

Стоит также отметить, что модель раздувающейся Вселенной еще раз обращает нас к глобальной мировоззренческой проблеме - проблеме множественности миров. В частности, один из создателей модели РВ А.Д. Линде отмечает: «Привычный взгляд на Вселенную как на нечто в целом однородное и изотропное сменяется представлением о Вселенной островного типа, состоящей из многих локально-однородных и изотропных минивселенных, в каждой из которых свойства элементарных частиц, величина энергии вакуума и даже размерность пространства могут быть различны».

В этом смысле можно уже по-другому взглянуть на проблему жизни «разумных» существ в других галактиках. Из вышесказанного следует, что другие галактики могут иметь совершенно другие свойства и взаимодействовать (говорить) на совершенно других языках без принципиальной возможности перевода. И дело здесь, как правильно отмечает Ровкин , не в изменении нашего мышления для понимания другой Вселенной, а в изменении структуры, пространственной ориентировки, размерности материального мира, носителя мышления, т.е. нас самих, и все это без представления, как это сделать! Можно отметить, что может быть поэтому свернута программа СЕТI поиска связи с другими «разумными» цивилизациями. Нужны иные принципиальные подходы, до которых человечество на Земле, видимо, не доросло.

Рассмотрим теперь, из чего же состоит вещество Вселенной, из чего состоит тот сгусток, который и привел к Большому Взрыву? В космомикрофизике материя Вселенной представляется состоящей из элементарных частиц, как наименьших структурных единиц вещества. Развивая далее атомистическую модель Демокрита о том, что весь мир состоит из атомов, на современном уровне мы уже должны говорить, что он состоит из взаимодействующих элементарных частиц. Как уже отмечалось, во времена Аристотеля предполагались четыре основные субстанции - земля, воздух, огонь и вода. Все сущее состояло из этих своего рода «элементарных частиц». В дальнейшем к началу 30-х годов нашего столетия наука смогла дать более приемлемое научное описание строения вещества на основе четырех видов элементарных частиц: протонов, нейтронов, электронов и фотонов. Используя эти устойчивые и стабильные образования, а также и законы квантовой механики, удалось объяснить природу химических элементов, их классификацию (таблица Менделеева), образование различных соединений и испускаемых ими излучений. Добавление к ним пятой частицы нейтрино, сначала, кстати, постулированного Паули из-за необходимости сохранения момента импульса при b-распаде, позволило объяснить процессы радиоактивного распада. Поэтому вначале казалось, что названные элементарные частицы и являются как бы основными кирпичиками мироздания.

Однако, к сожалению, приятная простота вскоре исчезла. Не прошло и года с открытия нейтрона (Чадвик, 1931), как был обнаружен позитрон. Он тоже сначала был предсказан Дираком в 1928 г., который показал, что его релятивистское уравнение может описывать как электрон с обычным отрицательным зарядом (-е), так и положительный электрон (+е). Этот позитрон был в дальнейшем в 1932 г. экспериментально обнаружен Андерсеном. Впоследствии сначала в природных космических лучах, а затем и в построенных ускорителях были обнаружены и другие частицы - мезоны, пионы и т.д. Таких частиц сейчас насчитывается уже более двух сотен.

Релятивистской квантовой теорией было установлено, что любой элементарной частице соответствует античастица в том смысле, что имея одинаковые массы, периоды полураспада, а также одинаковые квантовые числа, они проявляют противоположные электромагнитные свойства. Таким образом возникла глобальная проблема частица - античастица. Простой пример - разные по знаку заряда частицы. Причем при столкновении частицы и античастицы происходит аннигиляция, т.е. они взаимно уничтожают друг друга и при этом выделяется энергия в виде квантов электромагнитного излучения ( фотонов). Заметим, что фотоны, нейтральные пионы и η°-мезоны тождественны собственными античастицам, т.е. эти частицы и их античастицы не различимы. Все это множество частиц и принято называть элементарными частицами. Следует подчеркнуть, что это не означает, что все они обязательно являются упомянутыми кирпичиками мироздания - для этого достаточно протонов, нейтронов и электронов, из них состоят атомы. Но эти частицы возникают в результате основных взаимодействий частиц обычного вещества и участвуют в этих взаимодействиях, т.е. их тоже необходимо учитывать.

Изобилие типов элементарных частиц поставило перед физиками трудные вопросы: что же лежит в основе строения вещества, есть ли какая-нибудь общая схема, систематика, которая позволила бы просто и ясно объяснить взаимную связь элементарных частиц? Физики - тоже люди, и они упорно верят в то, что природе присуща внутренняя гармония и существует единый принцип, который, когда его откроют, позволит построить общую картину и систематизировать это обилие частиц.

В настоящее время в основе современной классификации элементарных частиц лежит их деление на два класса: сильновзаимодействующих (адроны) и слабовзаимодействующих ( лептоны). Адроны делятся так же на мезоны и барионы, а последние, в свою очередь, на нуклоны (нейтроны и протоны) и гипероны (λ, Σ, Θ, Ω). Название гипероны происходит от греческого «гипер» - выше, так как они тяжелее протона, барионы - греческого «барис» - тяжелый. К лептонам относятся электроны, мюоны и нейтрино. Барионы при любых реакциях могут превращаться в протоны или из них получаться. Барионам приписывается особое число В = 1, антибарионы имеют В = -1. В теории элементарных частиц показывается, что существует закон сохранения барионного числа в любом процессе. Именно этим законом обусловлена невозможность аннигиляции протона и электрона в обычных условиях, потому что протон - это барион, а электрон - лептон. С точки зрения квантовой статистики, частицы с разными (целыми и полуцелыми) спинами могут также разделяться на фермионы (статистика Ферми) с полуцелым спином (1/2) (электрон, нейтрон, мюон, протон, гиперон), бозоны (статистика Бозе) с целым (0 или 1) спином (пион (π-мезон), каон (К-мезон), фотон). Фермионы всегда, без исключения, возникают или аннигилируют парами. С другой стороны, бозоны могут рождаться или поглощаться по одному и группами по нескольку частиц.

В дополнение к закону сохранения числа барионов Гелл-Манн и Нишиджима в 1953 г. ввели еще одну квантовую характеристику - странность S , для которой тоже существует закон сохранения, согласно которому странность сохраняется во всех сильных (ядерных) взаимодействиях. Эти законы позволяют прогнозировать природу взаимодействия различных элементарных частиц. К концу 50-х годов нашего века численность и разнообразие элементарных частиц настолько выросли, что классификация их только по массе, заряду и спину, даже с учетом упомянутых законов сохранения барионного числа и странности, вызывала у физиков-теоретиков значительное неудовлетворение. Появлялись даже идеи, что за этим разнообразием скрывается некая симметрия.

Развитием этого поиска явилось еще одно изобретение Гелл-Манна (1963), а затем, независимо от него, Цвейга (1964) - модель кварков. В этой модели предполагается, что все сильновзаимодействующие элементарные частицы являются комбинациями трех основных частиц (которые называются кварками) и их античастиц. Название «кварк» взято Гелл-Манном из туманной фазы романа Дж. Джойса «Поминки по Финнегану»: «Три кварка для мистера Марка». Кварки имеют необычные свойства: электрический заряд, равный ±1/3 е или ±2/3 е , и барионное число (заряд), тоже дробное, равное ±1/3. Обозначения кварков и антикварков, а также их параметров даны в таблице.

Свойства кварков

Символ Заряд
q

S
Барионное число B
s
Kварки +2/3 e 0 1/3 1/2
–1/3 e 0 1/3 1/2
–1/3 e –1 1/3 1/2
Антикварки –1/3 e +1 –1/3 1/2
+1/3 e 0 –1/3 1/2
–2/3 e 0 –1/3 1/2

Таким образом, основные свойства кварков - заряд q (+2/3 е , -1/3 е , -1/3 е ), странность S (0, 0, -1), барионное число В (1/3, 1/3, 1/3) и спин s (1/2) не похожи на свойства других частиц. Однако различные комбинации этих гипотетических частиц воспроизводят свойства всех известных адронов с поразительной точностью. Предполагается, что, например, барионы построены из трех кварков, а мезоны - из двух кварков (кварк - антикварк). Реальны ли кварки в действительности или эта модель служит лишь удобным средством описания элементарных частиц, но лишена физического реального смысла? Пока это неизвестно. Кстати, последними исследованиями показано, что кварки не являются самыми «неделимыми». Обнаружены уже протокварки.

Тем не менее, несмотря на то, что экспериментально кварки в свободном состоянии не обнаружены, в теории элементарных частиц существует так называемая «стандартная модель». Согласно этой модели кварки различаются «ароматом»: u (от up - верхний), d (от down - нижний), s (от strange - странный), с (от charm - очарование), b (от beauty - красота), t (от truth - истинный). Кроме того кварки разделяются еще по одному параметру, который назвали «цветом». Для каждого кварка существует три «цвета»: красный, желтый и синий. Ясно, что к реальному цвету этот признак не имеет никакого отношения, так же как и «аромат» к реальному обычному запаху. Современные представления о природе таковы, что в рамках этой «стандартной модели» существуют всего три поколения кварков, лептонов и нейтрино, которые и представляют собой начальный уровень структурной организации материи.

Остановимся теперь на характере взаимодействия элементарных частиц. В настоящее время известны четыре фундаментальных взаимодействия: гравитационное, электромагнитное, слабое и сильное. Гравитационное и электромагнитное взаимодействия по сути своих названий относятся к силам, возникающим в гравитационных и электромагнитных полях. Заметим еще раз, что несмотря на «приоритет» гравитационного взаимодействия, количественно установленного еще Ньютоном, природа его до сих пор не является полностью определенной и на самом деле не ясно, как передается это действие через пространство.

Ядерные силы, относящиеся к сильным взаимодействиям, действуют на малых расстояниях в ядрах и обеспечивают их устойчивость, несмотря на отталкивающие действия кулоновских сил электромагнитных полей. Поэтому ядерные силы являются в основном силами притяжения и действуют между протонами (р-р), нейтронами (n-n). Существует также протон-нейтронное взаимодействие (p-n). Поскольку эти частицы объединены в одну группу нуклонов, то это взаимодействие нуклон-нуклонное. Слабые взаимодействия проявляются в процессе ядерного распада или более широко - в процессах взаимодействия электрона и нейтрино (оно может существовать также и между любыми парами элементарных частиц). Как мы уже знаем, гравитационное и электромагнитное взаимодействия меняются с расстоянием как 1/r 2 и являются дальнодействующими. Сильное ядерное и слабое взаимодействия являются короткодействующими. По своей величине основные взаимодействия располагаются в следующем порядке: сильное (ядерное), электрическое, слабое, гравитационное.

Этим основным взаимодействиям соответствуют четыре мировых константы. Заметим, что подавляющее число физических констант имеют размерности, зависящие от системы единиц отсчета, например в СИ заряд электрона е = 6 ×10 -19 Кл, его масса m = 9,1 ×10 -31 кг. Оказалось, что в различных системах отсчета основные единицы имеют не только различные размерности, но даже и численные значения. Такое положение не устраивает науку, так как, естественно, хотелось бы иметь безразмерные константы, не связанные в общем-то с условным выбором исходных единиц систем отсчета. Кроме того, фундаментальные константы не выводятся из физических теорий, а определяются экспериментально. В этом смысле теоретическую физику, действительно, нельзя считать самодостаточной и законченной для объяснения свойств природы, пока проблема, связанная с мировыми константами, не будет понята и объяснена .

Анализ размерностей физических констант приводит к пониманию того, что они играют очень важную роль в построении отдельных физических теорий. Однако, если попытаться создать единое теоретическое описание всех физических процессов, т.е., другими словами, сформулировать унифицированную научную картину мира от микро- до макроуровня, то главную, определяющую роль должны играть безразмерные, т.е. «истинно» мировые константы. Это и есть константы основных взаимодействий.

Константа гравитационного взаимодействия

(1.6.4)

Константа электромагнитного взаимодействия

(1.6.5)

Константа сильного взаимодействия

где g - цветовой заряд, причем . Индекс «s» - от английского слова «strong» (сильный).

Константа слабого взаимодействия

(1.6.7)

где g ~ 1,4 ×10 -62 Дж ×м 3 - константа Ферми. Индекс «w» - от английского слова «weak» (слабый). Заметим, что размерную константу гравитационного взаимодействия получил еще сам И. Ньютон : G ~ 6,67×10 -11 м 3 ×c 2 ×кг -1 для сил гравитационного взаимодействия

F = G Mm/R 2 . (1.6.8)

Мы помним также, что закон всемирного тяготения (1.6.8) недоказуем, так как получен путем обобщения опытных фактов. Причем абсолютная справедливость его не может быть гарантирована до тех пор, пока не станет ясным сам механизм тяготения. Константа электромагнитного взаимодействия отвечает за превращение заряженных частиц в такие же частицы, но при изменении скорости их движения и появлении дополнительной частицы - фотона. Сильное и слабое взаимодействия проявляются в процессах микромира, где возможны взаимопревращения частиц. Константа сильного взаимодействия количественно определяет взаимодействие барионов. Константа слабого взаимодействия связана с интенсивностью превращений элементарных частиц при участии нейтрино и антинейтрино.

Таким образом, считается, что все четыре вида взаимодействия и их константы обусловливают нынешнее строение и существование Вселенной. Так, гравитационное - удерживает планеты на их орбитах и тела - на Земле. Электромагнитное - удерживает электроны в атомах и соединяет их в молекулы, из которых, в том числе, состоим и мы сами. Слабое - обеспечивает длительное горение Солнца, дающего энергию для протекания всех процессов на Земле. Сильное взаимодействие обеспечивает возможность стабильного существования ядер атомов. Теоретическая физика показывает, что изменение числовых значений этих констант приводит к разрушению устойчивости одного или нескольких структурных элементов Вселенной. Например, изменение массы покоя электрона m 0 от ~0,5 МэВ до 0,9 МэВ приведет к невозможности энергетического баланса в реакции образования дейтрона в солнечном цикле. Дейтрон - атом водорода, состоящий из протона и нейтрона. Это «тяжелый» водород с А = 2 (тритий имеет А = 3). Уменьшение α s всего на 40% привело бы к тому, что дейтрон был бы не стабилен. Увеличение же делало бы стабильным бипротон, что привело бы к выгоранию водорода на ранних стадиях эволюции Вселенной. Константа α e изменяется в пределах . Другие значения приводят к невозможности должного отталкивания протонов в ядрах, а это ведет к нестабильности атомов. Увеличение α w приводит к уменьшению времени жизни свободного нейтрона. Это, в свою очередь, означает, что на ранней стадии Вселенной не образовался бы гелий и не было бы реакции тройного слияния α-частиц при синтезе углерода (). Тогда вместо нашей углеродной была бы водородная Вселенная. С другой стороны, уменьшение α w привело бы к тому, что все протоны оказались бы связаны в α-частицы.

В современном естествознании предполагается, что мировые константы стабильны начиная со времени 10 -35 с с момента рождения Вселенной, и что таким образом в нашей Вселенной как бы существует очень точная «подгонка» числовых значений мировых констант, обусловливающих существование ядер, атомов, звезд и галактик. Возникновение и существование такой ситуации не ясно. Тем не менее, эта «подгонка» (константы именно такие, какие они есть!) создает условия для существования не только сложных неорганических, органических и живых структур, но, в конечном счете, и человека .

Так из чего же все-таки состоит вещество Вселенной? Как ни странно, теоретическая физика, с точки зрения рассмотренной нами теории элементарных частиц, с ее могучим аппаратом и не менее могучими моделями отвечает: до 90% вещества Вселенной находится в неизвестном нам состоянии. Было установлено, что протоны и нейтроны образуют либо ядра различных атомов, либо громадные скопления нейтронных звезд. Поэтому в рамках «стандартной модели» кварков формы стабильной материи рассматриваются в виде двух групп: ядра атомов, имеющие массу не более 300 атомных единиц, и нейтронные звезды, имеющие структуру ядра (т.е. состоят из нейтронов и протонов), но с массой в 10 54 раз большей. Эти группы разделены огромным пробелом, состоящим предположительно их так называемой «странной» материи, в котором, может быть, находится до 90% всей массы Вселенной (рис.
).

Наличие возможности существования такой странной материи в кварковой модели строения вещества отчасти подтверждается выводом из наблюдений дальних галактик о невозможности наблюдения многих космологических объектов обычными астрофизическими методами. Это связано, в частности, с тем, что гравитационные поля видимых звезд или скоплений звездной пыли, по-видимому, недостаточны для создания условий из движения по наблюдаемым нами траекториям. Имеется как бы «скрытая» от наблюдателя масса. Э. Уитмен в 1984 г. высказал предположение, что эта «скрытая» масса состоит из материи, содержащей уже упомянутый S-кварк. Он как раз и называется странным кварком. Предполагается, что эта материя из странных кварков возникла в течение первой миллионной доли секунды после БВ, причем диаметр таких образований составлял от 10 -7 до 10 см, масса от 10 9 до 10 18 г, а число кварков от 10 33 до 10 42 . Из-за малых размеров и огромной плотности вещества (например, теннисный мяч из такой же материи весил бы 10 12 тонн) оно не проявляет себя в видимом диапазоне световых волн.

Для такого космологического объекта американским физиком Уилером в 1969 г. был предложен термин «черная дыра» (ЧД). ЧД - это объект, у которого такое большое гравитационное поле, что он ничего (в том числе и излучение) от себя не отпускает. Наступает факт «пленения» света. Кстати, еще в 1798 г. Лаплас говорил об объектах с огромной гравитацией, которые будут абсолютно черными для внешнего наблюдателя. ОТО показывает, что для таких полей масса объекта М должна соответствовать так называемому гравитационному радиусу R или радиусу сферы Шварцшильда, который первый решил уравнение Эйнштейна для поля тяготения сферического тела:

Этим расстоянием будет определяться горизонт событий. Для Солнца гравитационный радиус равен 3 км, для Земли - 1 см. Однако ни Солнце, ни Земля до таких размеров самопроизвольно не уменьшатся.

Предполагаются два варианта образования ЧД в процессе эволюции звезд. Первый - для звезд с массой больше двух масс нашего Солнца. По мере старения звезды ядерное топливо (водород) сжигается и гравитационное притяжение уже не может уравновеситься давлением за счет горения топлива. Звезда сжимается и превращается в ЧД. Второй - для малых звезд массой значительно меньшей массы Солнца. В начальные моменты жизни Вселенной плотность материи огромна, и малые неоднородности вещества создавали большие неоднородности гравитационного поля, это могло приводить к образованию ЧД в малых областях пространства. Кстати, по одной из гипотез, Тунгусский метеорит - микрочерная дыра (по космическим масштабам), «вошедшая» в Землю в районе поселка Ванавара в Сибири и «вышедшая» из нее в районе Бермудских островов («Бермудского треугольника»).

Наличие такого огромного гравитационного поля у ЧД приводит к тому, что время течет все медленнее и медленнее по мере приближения к ЧД. На расстоянии гравитационного радиуса время полностью останавливается с точки зрения удаленного наблюдателя, т.е. ЧД искривляет пространство и тормозит время. Как отмечал Б. Паркер, «Попав в ЧД, наш наблюдатель не сможет сообщить о том, что видит: он все время будет приближаться к ее центру... в центре будет находиться то, что осталось от звезды после коллапса - сингулярность (нулевой объем). По мере приближения к сингулярности наблюдатель заметит, что пространство и время поменялись ролями. По «нашу» сторону горизонта событий мы можем управлять пространством, но не временем: время течет одинаково независимо от наших действий. Но за горизонтом, как ни странно, можно управлять временем, но не пространством - нас затягивает сингулярность, хотим мы этого или не хотим. Оказавшись с ней рядом, мы поймем, что нас ждет та же судьба, что и звезду - нас сожмет до нулевого объема». В этом смысле ОТО описывает звезду как «кладбище» всего того, что ЧД успела захватить.

Кто бы мог подумать, что мы
будем так много знать и так
мало понимать.

А. Эйнштейн

Раз мы заговорили о попытках единого описания всех физических явлений, следует вкратце упомянуть о моделях единого физического поля (ЕФП). Такие попытки неоднократно предпринимались, начиная с Эйнштейна. Хотя до настоящего времени этой теории нет, можно отметить, что С. Вайнберг, Ш. Глэшоу и Э. Салам в 1967 г. показали, что слабое и электромагнитное взаимодействия есть одно и то же электрослабое (так они его назвали) взаимодействие, проявляющееся при энергиях свыше 100 ГэВ. При меньших энергиях спонтанно нарушается симметрия между ними, и в обычных условиях мы наблюдаем их как разные поля и взаимодействия. Ш. Глэншоу и Г. Джордан в 1979 г. предположили, что при энергии свыше 10 14 ГэВ слабое, электромагнитное и сильное взаимодействия также объединяются. Это так называемая первая теория Великого объединения (ТВО). По этой теории лептоны могут переходить в кварки и наоборот.

Однако, как мы помним, кварки имеют барионный заряд, не равный нулю, а у лептонов В = 0. Следовательно, здесь уже при таких превращениях нарушается закон сохранения барионного заряда. Кроме того возникает вопрос, насколько стабилен протон, время жизни которого составляет порядка 10 30 -10 32 лет. По сравнению с временем существования Вселенной (~10 10 лет) это время жизни протона значительно больше, чем возраст нашей Вселенной.

Если это действительно так, то возникает гипотеза, что вещество во Вселенной может быть не стабильно. Кроме того ТВО «разрешает» существование в свободном состоянии кварков, и тогда они действительно являются фундаментальными частицами. И наконец, при энергиях свыше 10 19 ГэВ возможно включение в общую схему объединения взаимодействий и гравитационных полей. Это и есть модель (или теория) супергравитации или суперсимметрии. Здесь происходит объединение симметрии ОТО. Частицами-переносчиками должны быть безмассовые частицы со спином s = 2, называемые гравитонами, о которых мы уже упоминали.

Физический вакуум порождает виртуальные (возможные) частицы, которые своей массой создают дополнительное поле тяготения. Согласно ОТО, в этом же месте и в тот же момент времени изменяются геометрические свойства пространства-времени, т.е. оно флуктуирует. Согласно такой модели, гравитон - это квант флуктуирующего пространства-времени, объединяющий в себе и элементарную частицу, и волну искривления, распространяющуюся по четырехмерному миру. Эффекты, связанные с этим, должны проявляться на так называемых планковских расстоянии и времени , соответствующая масса . Индекс «р» обозначает, что эти параметры - соответствуют планковским расстоянию, времени и массе. Отсюда делается вывод, что в ранние моменты существования Вселенной пространство-время было дискретным, квантованным, как это следует из физического смысла константы Планка.

Волну искривления пространства связывают в теории супегравитации с моделью суперструн. В этой модели в качестве элементарной основы мира берутся уже не описанные элементарные частицы, а элементарные процессы - колебания бесконечно длинных струн с очень малым диаметром. При этом могут возникать резонансы колебаний разных струн и вихри в пространстве, которые можно связать с ритмикой Космоса, циклическими процессами во Вселенной, оказывающими влияние на все процессы на Земле .

В теории супергравитации также показывается, что, согласно Т. Калуце (1921 г.) и О. Клейну (1926 г.), электромагнитное поле можно рассматривать как некое геометрическое свойство дополнительного пятого измерения пространства-времени. Не вдаваясь в теоретические тонкости, отметим, что это ненаблюдаемое пятое измерение сворачивается (компактифицируется) до малых ненаблюдаемых размеров. Это приводит к геометрическим симметриям, связанным с семью дополнительными измерениями пространства, компактифицированными в семимерную сферу. Тогда можно предположить, что мы живем в 11-мерной Вселенной. Это - три видимых пространственных измерения, семь невидимых, свернутых в пространстве, и время. Таким образом, новая и последняя на сегодняшний день в теоретической физике безразмерная константа - размерность Вселенной N = 11.

Свертка ненаблюдаемого измерения может быть качественно понята из приведенного примера бесконечно длинной струны, которую мы видим в одном измерении - длине. Микрообъекты рассматриваются уже не как точечные, а как одномерные. Исчезновение размерности можно также увидеть при свертывании плоского листа в цилиндр или в ленте Мебиуса, в которой происходит непрерывный переход с внешней поверхности листа на внутреннюю.

В связи с теорией ЕФП в настоящие время рассматривается также возможность существования кванта единого пространства-времени, который называется st (space - time)-квантом :

(1.6.10)

Если st-квант действительно существует, то это приводит к интересным выводам: в «объеме» st-кванта нарушены причинно-следственные связи. События, происходящие в st-кванте могут быть растянуты во времени, но сжаты в пространстве и наоборот. На уровне st-кванта пространство-время непрерывно творит само себя с изменяющимися в каждом акте топологией, физическими свойствами и законами из-за неопределенности пространства-времени. Спонтанные флуктуации пространства-времени могут привести к нарушению закона сохранения энергии. Предполагается, что в эти особые моменты, по-видимому, и произошел БВ. И наконец, существует возможность существования непрерывного множества виртуальных вселенных.

Существуют и другие попытки описать многомерность пространства, представить его расслоенным и даже мнимым в окрестностях черных дыр, когда объект пересекает сферу Шварцшильда . При этом частица, не наблюдаемая в одном пространстве, может наблюдаться в другом, и поэтому частицы тахионы, движущиеся со скоростями, большими скорости света, и тардионы, движущиеся со скоростями, меньшими скорости света, существуют в разных расслоенных пространствах, и принцип причинности не нарушается. Имеется также гипотеза Ю. Иванова о частотном пространстве . Согласно этой модели трехмерному геометрическому пространству сопоставляется сферическое частотное пространство, шаровыми слоями которого являются: не видимая человеческим глазом ультрафиолетовая область (УФ) спектра, видимая область спектра (оптический диапазон), невидимая инфракрасная область (ИК) спектра (рис.
). Тогда появление неопознанных летающих объектов (НЛО), «материализацию» или, наоборот «дематериализацию» различных физических объектов Ю. Иванов объясняет переходом из одного частотного пространства в другое. В связи с такой гипотезой предполагается, что рядом с нами в УФ- и ИК-областях частотного пространства процессы, в том числе и само время, могут протекать по-иному и, следовательно, может существовать другая, быть может, разумная жизнь.

Другой ультрасовременной моделью строения пространства является попытка заполнить его кубами с планковскими размерами, внутри которых каким-то образом вращаются взаимно противоположно петли времени С. Хокинга, переходы между которыми в известном смысле, и соответствуют переходам от одного пространства к другому. Все эти модели, конечно, являются умозрительными и требуют дальнейшего доказательства и экспериментального подтверждения. Как сказал Р. Фейнман, «многие физики трудятся над создание великой картины, объединяющей все в одну сверхмодель. Это восхитительная игра, но в настоящее время игроки никак не договорятся о том, что представляет собой эти великая картина».

В связи с уже упомянутой ранее «подгонкой» мировых констант встает вопрос не только о пределах изменения их значений в отдельности, но и об изменении в целом всего набора этих констант, позволяющем судить об устойчивости структуры Вселенной.

Следует заметить, что с общечеловеческой точки зрения разумным ограничением изменения набора констант в целом является сохранение условий для возникновения и существования жизни. Попыткой ответа на вопрос, что же определяет столь точную «подгонку» мировых констант, что реализует существование сложной структуры Вселенной и образование жизни вообще, стало применение скорее гуманитарного, чем естественнонаучного антропного принципа (АП), согласно которому наша Вселенная обладает наблюдательными свойствами именно потому, что эти свойства допускают возможность существования наблюдателя, т.е. человека.

Антропный принцип впервые в 1958 г. был предположен нашим соотечественником Г. Идлисом и затем Б. Картером в 1974 г., но в неявном виде он уже функционировал и раньше в виде антропоморфизма. Этот принцип применяется в слабом и сильном вариантах.

Слабый антропный принцип . На свойства Вселенной накладываются ограничения наличием нашей разумной жизни. То, что наблюдают астрономы, зависит от присутствия наблюдателя.

Сильный антропный принцип . Свойства Вселенной должны быть такими, что бы в ней обязательно была жизнь.

Согласно этим принципам между фундаментальными свойствами Вселенной и возможностью существования в ней жизни установлены строго определенные отношения. Как мы уже отмечали, фундаментальные свойства мира количественно выражаются через фундаментальные постоянные и при их незначительном изменении может сильно измениться сценарий развития Вселенной, а теперь мы можем сказать, что и самой жизни во Вселенной, естественно, в нашем понимании. Таким образом, антропный принцип по сути превращает факт появления человека во Вселенной из случайного, незначительного, в центральный, приоритетный. «Любая физическая теория, которая противоречит существованию человека, очевидно, не верна» .

Заметим также, что антропный принцип не отвергает возможности существования других Вселенных. Однако эволюция может происходить без наблюдателей, и, следовательно, жизнь в нашем понимании в них невозможна. При использовании антропного принципа появляется возможность моделировать другие допустимые Вселенные, что, с точки зрения современной физики, доказывает существование множества миров.

Кроме того, АП приводит к мировоззренческим уточнениям не только по множественности обитаемых Вселенных, но и по множественности существования жизни в нашей Вселенной. Как справедливо указывалось в , вопрос о существовании жизни в нашей Вселенной в свете антропного принципа приобретает новую окраску. Он означает, что наша Вселенная чрезвычайно тонко приспособлена для возникновения и существования жизни. Можно было бы подумать, что это относится к отдельной достаточно крупной, но все же локальной области Вселенной, где в силу случайной флуктуации создались условия, необходимые для существования жизни. Но как мы уже говорили, предполагается, что Вселенная однородна и изотропна, т.е. ее свойства в больших масштабах одинаковы. Следовательно, когда мы говорим о чрезвычайно тонкой приспособленности Вселенной для жизни, речь идет не о локальных областях, а обо всей Вселенной в целом. Таким образом, применение АП приводит к выводу о закономерном возникновении и широкой распространенности жизни и Разума во Вселенной. Антропный принцип, с точки зрения физики и философии, «отвергает» возможность уникальности земной жизни. Проблемы множественности миров неоднократно обсуждались на всех этапах человеческого общества. Например, Анаксагор выступил с идеей о гониометриях, каждая из которых содержит в себе все свойства Вселенной. Другой пример признания множественности миров дает нам Джордано Бруно, сожженный, как известно, инквизицией за эту идею.

В современном естествознании к этой идее приводит ОТО, одним из выводов которой является представление, что наш мир снаружи может выглядеть как микрочастица. Такие объекты наш соотечественник А.А. Марков назвал фридмонами. Дальнейшее развитие идей о множественности миров привело к пониманию, что Земля находится не в центре Солнечной системы. Х. Шекли показал, что и Солнце находится не в центре Галактики, а вблизи ее края. Хаббл и другие исследователи установили, что наша Галактика не только не является центром Вселенной, но и более того, у нашей Вселенной вообще нет пространственного центра - все ее точки эквивалентны. Как уже упоминалось, совсем недавно мы стали понимать, что состоим не из основной материи Вселенной. А расширение Вселенной на ранних стадиях означает, что наша Вселенная - не единственный из раздувшихся «шариков» (Помните наш пример с воздушными шариками?).

Анализ современных теорий физики элементарных частиц, данных астрофизики и космологии показывает необходимость одновременного выполнения некоторых соотношений относительно мировых констант в дополнение к упомянутым уже формулам (1.6.4 - 1.6.7):

(1.6.11)

Это само по себе в обычном понимании довольно противоречиво. Если, согласно , изобразить на плоскости Х, Y, где и , эти неравенства графически, то получается, что неравенствам (1.6.11) удовлетворяют две области (рис.
), соответствующие устойчивым структурам Вселенных. В области 1 образование сложных структур и жизни невозможно, так как минимальная масса в ней - порядка массы протона (m ~10 -5 г).

В области 2 будут выполняться условия для существования нашей Вселенной. В области 3 значения фундаментальных констант отличны от наших, но там тоже могут возникать сложные структуры. Однако зоны, где соблюдаются условия (1.6.11), соответствующие возникновению и наличию жизни, занимают предположительно незначительную часть области 3.

Заметим также, что фундаментальные константы играют важную роль в построении масштабов нашего мира. Они позволяют дать некую иерархическую картину структуры Вселенной. Это можно пояснить графически представлениями изменения размеров тел и расстояний, а также их масс (рис.
,
). Действительно, наиболее естественными и наглядными квалификационными признаками являются размер объекта и его масса. Выделяют микромир с характерными размерами меньше, чем 10 -8 м (элементарные частицы, ядра, атомы, молекулы), макромир (макромолекулы, кристаллы, жидкости, газы, живые организмы, человек, объекты техники, т.е. макротела) и мегамир (планеты, звезды, галактики). Понятно, что границы микро- и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов и в основе макро- и мегаявлений лежат микроявления. И это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро- и мегаразмеры объектов соотносятся друг другу как макро/микро » мега/макро.

Кварки «являются» составной часть протонов и нейтронов, затем из них образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале разномерности тел, то мы приходим у обычным макротелам и далее - планетам и их системам, звездным скоплениям, галактикам и метагалактикам, т.е. можно представить переход от микро, макро и мега как в размерах, так и физических процессах (моделях). И именно фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего Мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро- и мегаструктур и в целом высокоорганизованных форм живой материи. Имеющая место «подгонка» мировых констант, т.е. определенные их значений и взаимоотношений между ними, по существу и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема казалось бы абстрактных мировых констант имеет глобальное мировоззренческое значение.

Антропный принцип требует также, чтобы средняя плотность вещества Вселенной ρ ср была бы близка к критической ρ кр" , так как при время существования нашего Мира было бы настолько мало, что за это время жизнь не могла бы возникнуть. Такой взгляд коррелирует с моделью развития Вселенной, построенной на положениях классической динамики Ньютона.

Рассмотрим теперь механизм зарождения и развития звезд, а также в связи с этим классификацию звезд и методы их наблюдения. Мы уже отмечали, что согласно гамовской модели БВ все элементы Вселенной образовались в результате термоядерных реакций. Остановимся на этом подробнее. При конденсации звезды из облака межзвездных газа и пыли высвобождается гравитационная потенциальная энергия. Часть этой энергии расходуется на излучение, а остальная часть преобразуется в кинетическую энергию конденсирующих атомов, и, таким образом, повышается температура звезды. При температурах Т ~ 10 7 К и плотности ~ 100 г/см 3 начинаются термоядерные реакции, которые могут идти в зависимости от первоначального состава межзвездной пыли и, следовательно, звезд по двум схемам или цепочкам. Большинство звезд состоит в основном из водорода (60-90% по массе), гелия (10-40%) и тяжелых элементов (0,1-3%). Звезды, в состав которых входят кроме водорода и гелия тяжелые элементы, выброшенные при вспышках так называемых новых или взрывах сверхновых звезд, называются звездами населения I.

Новыми звезды называются потому, что в древности предполагалось, что это действительно новые звезды и до взрыва их нельзя было видеть. На самом деле в некоторых звездах возникают неустойчивости, происходит извержение вещества в пространство и светимость ее резко увеличивается. Частота извержений изменяется от нескольких месяцев до лет. У остальных звезд извержения бывают примерно раз в 1000 лет. Сверхновые звезды фактически связаны со взрывом массивной звезды, что бывает один раз в несколько столетий. За 10 последних веков обнаружено 7 сверхновых звезд. Интенсивность излучения сверхновых звезд в 10 4 раз больше, чем у новых. Наше родимое Солнце с 74% Н, 24% Не и 2% тяжелых элементов есть обычная звезда населения I. Звезды населения II образовались из первичного водорода и гелия и в основном содержат гораздо меньше остаточного материала других звезд. Они содержат много водорода, мало гелия и очень мало тяжелых элементов.

В первой термоядерной реакции, происходящей при конденсации из межзвездной пыли, участвует лишь водород. При достижении указанных температур и плотностей газа происходит реакция слияния (присоединения) двух протонов в результате слабых взаимодействий:

где D 2 - дейтерий, β + - позитрон, v e - нейтрино.

Заметим, что мог бы образоваться изотоп He 2 , но его в природе не обнаружено. Как только в результате реакции (1.6.18) образуется D 2 , начинаются еще две дополнительные реакции:

первая (1.6.19)

и за ней вторая с участием двух ядер He 3

Конечным результатом этой последовательности реакции, которая называется протон-протонной цепочкой, является превращение четырех атомов водорода в один атом гелия (рис.
). фотоны) характеризует более холодное вещество.

В целом фотоны оказывают радиационное давление на внешний слой звездного газа. Как нам уже известно из ОТО, масса m обладает энергией Е = mc 2 . И, наоборот, энергии Е соответствует определенная масса m. Следовательно, электромагнитное излучение с энергией Е обладает эквивалентной ей массой m = Е/c 2 . И поскольку электромагнитное изучение распространяется со скоростью света с, то оно имеет и импульс, согласно (3.8) = mc = E/c, и, следовательно, оказывает радиационное давление. В равновесии действующее на любой малый объем звездного вещества давление, обусловленное гравитацией, уравновешивается радиационным давлением. Как только термоядерные реакции обеспечивают достаточное излучение для того, чтобы уравновесить направленную внутрь гравитационную силу, сжатие звезды прекращается. Тем самым мы снова приходим к пониманию пульсирующей теперь уже звезды, как раньше в целом Вселенной.

Если в звезде имеется некоторое количество углерода, то может осуществиться еще одна цепочка реакций, в результате чего также происходит превращение водорода в гелий, а углерод служит как бы катализатором:

(1.6.21)

Таким образом, согласно (1.6.21) три протона захватывают в следующих друг за другом реакциях (ρ, γ) и β-распадах. А после захвата четвертого протона и излучения α-частицы вновь образуется ядро C 12 . Конечный результат этой цепочки тот же, что и в рассмотренной протон-протонной: превращение четырех атомов водорода в один атом гелия. Так как в этой последовательности участвуют и образуются атомы углерода и азота, то ее и называют углеродо-азотным циклом . Если в состав звезды входит углерод и температура выше 2 ×10 7 К, то основным источником энергии является углеродно-азотный цикл. Более массивные и яркие, и поэтому более горячие, звезды выделяют энергию за счет углеродно-азотного цикла. Примером таких звезд является одна из самых ярких звезд северного полушария - Сириус. Основным источником энергии Солнца служит протон-протонная цепочка.

Не останавливаясь далее на деталях физики процессов в звездах, заметим, что в результате других ядерных реакций, в том числе с участием нейтронов (а это образование элементов с атомным номером больше 82), могут образовываться и тяжелые элементы. При реакции образования углерода из трех атомов гелия наблюдается также процесс выгорания гелия по следующей цепочке:

Рассмотрим теперь процесс эволюции звезд. Итак, звезды конденсируются из межзвездной пыли, возникают термоядерные реакции, звезды разогреваются, сжигают свое ядерное горючее и гибнут, взрываясь в виде сверхновых, или просто угасают, превращаясь в куски ядерного пепла. О взаимоотношениях гравитационного и радиационного давлений мы уже говорили. Если эти давления уравновешиваются, то звезда стабилизируется и приобретает характерные для нее размеры и светимость. Астрономы установили, что для того, чтобы проследить за эволюцией звезд, достаточно знать две величины, которые сравнительно легко измерить: собственную светимость и цвет, характеризующий температуру поверхности. Поэтому можно построить в этих координатах зависимость светимости от цвета, и поскольку каждая звезда в любой период жизни имеет определенную светимость и определенный цвет, то она будет точкой на этой диаграмме. Так как звезды разные по времени своего развития, то можно сказать, что в течение жизни звезды точка, ее представляющая, движется по этой диаграмме, описывая некую кривую. Таким образом можно проследить процесс жизни и угасания звезды.

Если же говорить о конкретной динамике поведения звезды, то она зависит только от двух факторов: массы вещества, из которого она конденсировалась, и состава этого вещества. В начальный период жизни звезды играет роль только ее масса. Если сравнивать динамику звезд, химический состав которых подобен составу Солнца, т.е. звезд населения I, то окажется, что на протяжении большей части своей истории эти звезды занимают положения вблизи так называемой главной последовательности (рис. ). Начальное положение звезды зависит от ее массы: более массивные звезды оказываются более горячими и яркими, менее массивные звезды холодные и тусклые. Так как большую часть своей жизни звезда стабильна, диаграмма цвет - светимость для любой группы звезд представляет собой распределение точек вдоль главной последовательности. Однако на этой диаграмме будут наблюдаться и отклонения от главной последовательности. Это связано с начальным составом и массой звезды и ее переходом из одного типа к другому. Солнце перемещается вдоль главной последовательности уже 4,5 ×10 9 лет и будет продолжать это движение дальше 5 ×10 9 лет, а затем перейдет к последним этапам своей эволюции. Более массивные звезды проходят этот путь быстрее, поскольку они расположены на главной последовательности более высоко и время прохождения цикла составляет ~10 7 лет. По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии и поэтому светимость звезды возрастает.

С другой стороны, увеличение энергии приводит к увеличению радиационного давления на внешнем слое звезды, и внешние слои расширяются. В результате этого расширения газ охлаждается, излучаемый свет становится более красным и звезда резко смещается от главной последовательности (рис.). Этот процесс расширения и покраснения идет до тех пор, пока диаметр звезды не увеличится в 200-300 раз, и звезда становится красным гигантом. Примером красного гиганта является звезда Бетельгейзе из созвездия Ориона. Эволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Землю из-за огромного количества выделившейся энергии, а затем в результате гигантского расширения поглотит ее останки. Однако заметим, что по расчетам астрономов до этого момента пройдет около 5 миллиардов лет. Время пребывания обычной звезды в виде красного гиганта составляет около 10 7 лет.

Достигнув на этой стадии максимальных размеров, звезда быстро смещается влево на диаграмме светимость - цвет. Этот переход от красного гиганта до пересечения с главной последовательностью составляет примерно 1% от всего времени существования звезды. Солнце, например, пройдет эту эволюцию за 100 миллионов лет. В этот период у большинства звезд нарушается равновесие и они начинают пульсировать, изменяя свою светимость. Это так называемые переменные звезды. Далее эволюция идет в зависимости от массы звезды. Если она меньше 1,4 солнечной массы («легкая» звезда), то при израсходовании ядерного горючего звезда смещается вниз на диаграмме светимость - цвет и в конце концов она охлаждается и угасает. Но при этом она проходит через стадию неустойчивости и происходят периодические извержения и возрастания светимости. Это и есть уже упомянутая стадия новой звезды, которая постепенно переходит в стадию белого карлика, еще более охлаждаясь - красного карлика, и наконец - черного карлика. Эволюция звезды, масса которой больше 1,4 солнечной массы, кончается эффектным гигантским взрывом и это - рождение сверхновой звезды.

Голдом была предложена модель, согласно которой пульсар - это вращающаяся нейтронная звезда. Время жизни пульсара - 108 лет. Механизм возникновения переменного излучения по этой модели состоит в следующем. Электроны и протоны захватываются сверхсильным магнитным полем звезды. Вместе со звездой вращаются магнитное поле и захваченные им частицы (рис.
). Вблизи внешней границы плазмы, которая удерживается этим магнитным полем, частицы движутся со скоростями, близкими к световой. Согласно квантовой электродинамике, они испытывают ускорение и, следовательно, излучают. Это ускорение очень большое, и интенсивность излучения поэтому велика. Следствием релятивистского характера движения частиц является то, что излучение в основном испускается вдоль направления движения частиц. Поскольку вращение происходит вместе с магнитным полем звезды, то она излучает как «прожектор», луч которого обегает небо. При каждом обороте пульсара на Земле наблюдается вспышка.

Черную дыру или слиянии двух черных дыр. При этом выделяется гигантская энергия порядка 10 46 -10 47 эрг в области 10-100 км за время около секунды.

В ноябре 1999 г. в научной печати появилось сообщение об экспериментах на релятивистском коллайдере (ускорителе-сталкивателе тяжелых ионов, в котором частицы разгоняются до скорости, равной 0,99 скорости света) в Брукхевенской национальной лаборатории (США) по получению кварк-глюонной плазии, т.е. такого состояния вещества Вселенной, в котором она находилась в первые мгновения после БВ. Другими словами, можно рукотворно на Земле осуществить этот Большой Взрыв! Это вызвало неоднозначную реакцию даже среди профессионалов-физиков.

Дело в том, что в таких условиях как раз может возникнуть материя из «странных» кварков, начнется неконтролируемая реакция по превращению всей нашей «земной» материи в «странную материю», в новое состояние со сверхплотным веществом и температурой в триллион градусов, и в итоге может образоваться черная дыра. Если теоретики не ошибаются, что рождению Вселенной предшествовал БВ, а экспериментаторы могут воссоздать его на Земле, то об успешности такого моделирования судить уже придется не нам!

Мы уже говорили в связи с проблемой CETI, что молчание далеких цивилизаций и вспышки сверхновых звезд приводят к мысли, что, вероятно, на каком-то уровне знаний уже находились энтузиасты, которым не терпелось побыстрее узнать правду о зарождении Вселенной и даже посоревноваться с природой. Результатом такой спешки и могли быть очередные черные дыры во Вселенной.

В связи с классификацией звезд и происходящих в них атомных и ядерных процессов и испусканием различных излучений остановимся кратко на неоптических методах наблюдений астрофизических объектов. Эти методы наблюдений возникли из-за того, что видимый свет, как мы видели на примере «скрытой» массы, несет не всю информацию о том, что происходит в Космосе. Инфракрасное и рентгеновское излучение сильно поглощаются атмосферой Земли. Нейтрино вообще слабо взаимодействует с веществом. Поэтому для исследования инфракрасного и рентгеновского излучений используют ракеты и спутники, а для наблюдения нейтрино строят глубокие шахты, чтобы максимально защитить детекторы от фона. Например, такая лаборатория до недавнего времени была у нас в Баксанском ущелье на Кавказе. Имеются также проекты использования для этой цели толщи вод Байкала. Правда особых успехов в регистрации нейтрино пока нет. Методами радиоастрономии были обнаружены радиоисточники в нашей галактике, часть которых (около 200) удалось отождествить с видимыми галактиками или звездами. Первый внегалактический источник, расположенный в созвездии Лебедь, обнаружен в 1948 г.

В начале 60-х годов были обнаружены такие радиоисточники, которые оказались связанными не с обычными радиогалактиками, а с необычными голубого цвета объектами, напоминающими звезды. Так как они малы по сравнению с размерами галактик, их назвали квазизвездными объектами или кратко квазарами. Природа их происхождения и строения в настоящее время не ясна. Однако, наблюдая их спектры, обнаружили у них исключительно большие красные смещения. А это, как нам уже известно, связывается с расширением Вселенной. Поэтому можно предполагать, что квазары - наиболее удаленные и быстродвижущиеся объекты во Вселенной. Кроме того, чтобы отдельная квази-звезда имела яркость квазара, она должна излучать фантастическое количество энергии, коло 10 46 -10 47 эрг/с, что в 10 12 -10 13 раз превышает энергию излучения Солнца. В таких условиях квазар за месяц должен испускать количество энергии, соответствующую массе Солнца. Для объяснения такой огромной мощности расхода энергии квазары должны иметь массу, в 10 9 раз превышающую массу Солнца.

На основе изложенных выше положений постнеклассической физики можно сделать некоторые обобщения относительно эволюции Вселенной. В современном представлении пространство не есть однородное и изотропное пустое вместилище материальных объектов, как это предполагалось в классическом естествознании. Пространство взаимодействует с материальными объектами, находящимися в нем, и искривляется вблизи гравитирующих масс. Гравитационное поле выступает как искривление четырехмерного пространства-времени, и в упомянутой модели геометродинамики искривление пространства сложной топологии порождает все многообразие материального мира.

Заметим также, что в теории раздувающейся Вселенной (РВ), связанной, как мы говорили, с возникновением материального мира из знания, мы не должны «навязывать» Природе свои законы, удобные и понятные нам, может быть, не свойственные природе. Используя не опровергнутые физические законы, разрабатывая новые модели, мы приходим на новом витке знаний к пониманию того, что наш мир холистичен и познавать его надо с этих позиций.

Что касается физики Вселенной, то можно сказать, что в настоящее время мы имеем о ней некоторые представления, накопили много сведений о конкретных физических явлениях, тем не менее ощущается, что вопросов больше, чем ответов. Постановка важного и правильно сформулированного вопроса означает шаг по пути познания законов Природы, так как мы начинаем понимать, в каком направлении нам двигаться и как искать эти ответы. Несомненно, в будущем мы получим еще больше ответов, в том числе и на те вопросы, которые мы здесь кратко обсуждали, но, естественно, что мы встретимся и с новыми фундаментальными проблемами. Однако в этом - сущность научного познания мира, в том числе и на основе физики. В этом и очарование той же физики.

Тема 7. Современная космологическая картина мира и модели Вселенной

Основные понятия:

Вселенная (Универсум); метагалактика; космология; предмет космологии; протовещество; Большой взрыв; вывод Фридмана; модель пульсирующей Вселенной; теория горячей Вселенной; инфляционная теория, реликтовое излучение; универсальные постоянные; структура Вселеной; Великое объединение, Суперобъединение, антропный космологический принцип (АКП); гипотеза Троицкого В.С.; гипотеза Шварцмана В.Ф.; космологические модели Вселенной; «молчание космоса».

В истории культуры можно найти множество попыток ответить на вопрос о происхождении мира. Таковыми являются мифологические, религиозные, научные. Однако, только наука способна в силу своей специфики дать рациональное обоснование этой проблеме. Прежде всего, нужно сказать о различии трех близких по смыслу понятий, а именно таких, как бытие, универсум и Вселенная . Понятие бытие является философским и обозначает все существующее, бытующее. Понятие универсум употребляется в философии, и в науке, не имея специфической философской нагрузки (в плане противопоставления бытия и сознания), и обозначает все как таковое. Значение термина Вселенная более узкое и приобрело специфически научное звучание.

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой, или нашей Вселенной .

Можно отметить размеры Метагалактики: радиус космологического горизонта составляет приблизительно 20 млрд световых лет. Световы м годом называют расстояние, которое световой луч, движущийся со скоростью 300 000 км/сек (скорость света в вакууме) преодолевает за один год, то есть составляет 10 триллионов километров. Строение и эволюция Вселенной изучается космологией.

Кос мология – один из тех разделов естествознания, которые по своему существу всегда находятся на стыке наук. Космология – это междисциплинарная наука, она использует достижения и методы физики, математики, философии. Изучение Вселенной как единого упорядоченного целого основывается на следующих предпосылках:

    Формулируемые физикой универсальные законы функционирования мира считаются действующими во всей Вселенной.

    Производимые астрономами наблюдения тоже признаются распространяемыми на всю Вселенную.

    Истинными признаются только те выводы, которые не противоречат возможности существования самого наблюдателя, то есть человека (антропный принцип).

Выводы космологии называются моделями происхождения и развития Вселенной. Это связано с тем, что одним из основных принципов современного естествознания является представление о возможности проведения в любое время управляемого и воспроизводимого эксперимента над изучаемым объектом, на основе которого делается заключение о наличии закона. Ко Вселенной это методологическое правило остается неприменимым, так как наука формирует универсальные законы, а Вселенная уникальна. Поэтому все заключения о происхождении и развитии Вселенной следует считать не законами, а моделями, то есть возможными вариантами объяснения. Предмет космологии – весь окружающий нас мегамир, вся «большая Вселенная».

Задача космологии состоит в описании наиболее общих свойств, строения и эволюции нашей Вселенной. Поэтому выводы космологии имеют большое мировоззренческое значение и опираются на данные астрономии и астрофизики.

Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила уникальные явления: расширение Метагалактики; космическую распространенность химических элементов; реликтовое излучение, свидетельствующее о том, что Вселенная непрерывно развивается. С эволюцией структуры Вселенной связано возникновение скоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. Космогонией (от греч. «космос» и «гонейа» – зарождение) называют раздел астрономии, занимающийся вопросами происхождения и развития небесных тел и их систем (различают планетную, звездную, галактическую космогонию).

Современная космология как наука о строении и эволюции Вселенной еще очень молодая наука, возникшая в начале ХХ века. Хотя космологические построения являлись сердцевиной многих учений, начиная с древности, все они выступают предысторией научной космологии. Лишь создание общей теории относительности Эйнштейна в 1916 году открыло новую строго научную эру развития этой дисциплины. Первая релятивистская модель, основанная на новой теории тяготения и претендующая на описание всей Вселенной, была построена А.Эйнштейном в 1917 году. Однако она описывала стационарную Вселенную, и, как показали астрофизические наблюдения, оказалась неверной. Современный же этап ее истории свидетельствует о полном слиянии двух, в прошлом различных, отраслей знания – космологии и физики элементарных частиц в одну науку. Так что рассматриваемые в космологии модели эволюции Вселенной – не досужие домыслы фантазеров, а модели, которые еще должны прорабатываться, дополняться, но в рамках которых видится возможность для решения как известных космологических проблем, так и проблем физики элементарных частиц.

Наиболее общепринятой в современной космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной . В основе этой модели лежат два предположения:

    свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность);

    наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна.

Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

    принципом относительности (во всех инерционных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга);

    экспериментально подтвержденным постоянством скорости света.

Из принятия теории относительности вытекало, что искривленное пространство не может быть стационарным: оно должно или расширяться, или сжиматься. Первым это заметил петроградский физик и математик Александр Александрович Фридман. Однако на этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения».

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу.Это объясняется эффектом Доплера (при удалении от нас какого-либо источника колебаний, (излучений) воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается); при излучении происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн. Таким образом, для всех далеких источников света красное смещение было зафиксировано, причем чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждает гипотезу о расширении Метагалактики, т.е. видимой части Вселенной.

Конечна или бесконечна Вселенная, какая у нее геометрия – эти и многие другие вопросы связаны с эволюцией Вселенной, в частности, с наблюдаемым расширением. Если, как это считают в настоящее время, скорость «разлета» галактик увеличивается на 75 км/сек на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10-20 млрд. лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра. Проще говоря, Вселенная тогда представляла собой одну гигантскую «ядерную каплю». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Такой процесс называется «Большим взрывом» . Стоит сказать, что этот взрыв не является подобием обычного взрыва на Земле, который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства. «Большой взрыв» произошел одновременно везде, заполнив с самого начала все пространство. Наблюдаемая нами картина разлета галактик происходила с одинаковой скоростью и в сколь угодно далеком прошлом. А именно на таком предположении и основана гипотеза первичной Вселенной – гигантской «ядерной капли», пришедшей в состояние неустойчивости. Это предшествующее взрыву особое состояние ученые называют «сингулярным». Оно отличалось бесконечной плотностью массы, бесконечной кривизной пространства, столь высокой температурой, при которой еще неразличимы вещество и излучение и т д. Считается, что именно в «окрестностях» сингулярности закладывались и материал строения, и константы, и законы современного состояния эволюции Вселенной.

С эволюцией структуры Вселенной связано возникновение скоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. Сама Вселенная возникла примерно 20 млрд лет тому назад из некоего плотного и горячего протовещества. Сегодня можно только предполагать, каким было это прародительское вещество Вселенной, как оно образовалось, каким законам подчинялось, и что за процессы привели его к расширению. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширяться. На начальной стадии это плотное вещество разлеталось, разбегалось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновениях частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества, концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В них в свою очередь возникали более плотные участки – там впоследствии и образовались звезды и даже целые галактики. Предположительно, в результате гравитационной нестабильности в разных зонах образовавшихся галактик смогли сформироваться плотные «протозвездные образования» с массами, близкими к массе Солнца. Начавшийся процесс сжатия ускорился под влиянием собственного поля тяготения. Процесс этот сопровождался свободным падением частиц облака к его центру – происходило гравитационное сжатие. В центре облака образуется уплотнение, состоящее из молекулярного водорода и гелия. Возрастание плотности и температуры в центре приводит к распаду молекул на атомы, ионизации атомов и образованию плотного ядра протозвезды.

Существует гипотеза о цикличности состояния Вселенной . Возникнув когда-то из сверхплотного сгустка материи, Вселенная, возможно, уже в первом цикле породила внутри себя миллиарды звездных систем и планет. Но затем неизбежно Вселенная начинает стремиться к тому состоянию, с которого началась история цикла, красное смещение сменяется фиолетовым, радиус Вселенной постепенно уменьшается, и, в конце концов, вещество Вселенной возвращается в первоначальное сверхплотное состояние, по пути к нему безжалостно уничтожив всяческую жизнь. И так повторяется каждый раз, в каждом цикле на протяжении вечности!

К началу 30-х годов сложилось мнение, что главные составляющие Вселенной – галактики, каждая из которых в среднем состоит из 100 млрд звезд. Солнце вместе с планетной системой входит в нашу Галактику, основную массу звезд которой мы наблюдаем в форме Млечного Пути. Кроме звезд и планет, Галактика содержит значительное количество разреженных газов и космической пыли.

Таким образом, согласно представлениям современной науки, наша Вселенная возникла примерно 20 млрд лет тому назад из некоего плотного и горячего протовещества.

В настоящее время космологи предполагают, что Вселенная не расширялась «от точки до точки», а как бы пульсирует между конечными пределами плотности. Это означает, что в прошлом скорость разлета галактик была меньше, чем сейчас, а еще раньше система галактик сжималась, т.е. галактики приближались друг к другу с тем большей скоростью, чем большее расстояние их разделяло. Такая модель имеет название «пульсирующей Вселенной ». Современная космология располагает рядом аргументов в пользу данной модели. Однако они носят чисто математический характер; главнейший из них – необходимость учета реально существующей неоднородности Вселенной. Окончательно решить вопрос, какая из двух гипотез – «ядерной капли» или «пульсирующей Вселенной» – справедлива, сейчас невозможно.

Начиная с конца сороковых годов прошлого века все большее внимание в космологии привлекает физика процессов, на разных этапах космологического расширения. В выдвинутой в это время Г.А. Гамовым теории горячей Вселенной рассматривались ядерные реакции, протекавшие в самом начале расширения Вселенной в очень плотном веществе. При этом предполагалось, что температура вещества была велика и падала с расширением Вселенной. Теория показывала, что вещество, из которого формировались первые звезды и галактики, должно состоять в основном из водорода (на 75%) и гелия (25%), примесь других химических элементов незначительна. Другой вывод теории – у сегодняшней Вселенной должно существовать слабое электромагнитное излучение, оставшееся от эпохи большой плотности и высокой температуры вещества. Такое излучение в ходе расширения Вселенной было названо реликтовым излучением – фоновое космическое излучение, возникшее вследствие аннигиляции вещества и антивещества, спектр которого близок к спектру абсолютно черного тела. Существование реликтового излучения было предсказано еще в 1948 году Г. Гамовым, Р. Альфером и Р. Херманом на основании фридмановской модели эволюции Вселенной. В 1964 году американскими радиоастрономами А. Пензиасом и Р. Вилсоном был зарегистрирован радиошум, который оказался шумом, соответствующим реликтовому излучению. Излучение это должно было выжить в процессе расширения Вселенной, вследствие которого температура его должна была постепенно понижаться и на сегодняшний день составлять примерно 3 градуса Кельвина.

Таким образом, можно подытожить, что начальное состояние Вселенной (так называемая сингулярная точка): – это бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц.

Современная космология рассматривает в качестве одного из наиболее вероятных сценариев эволюции Вселенной, в рамках которого удается решить большинство космологических проблем, сценарий, включающий инфляционную стадию. Основная идея инфляционной теории состоит в том, что расширение Вселенной и весь последующий ход ее эволюции рассматриваются из состояния, когда вся материя была представлена только физическим вакуумом.

Вакуум – это пространство, в котором отсутствуют реальные частицы и выполняется условие минимума плотности энергии в данном объеме. По современным научным представлениям, вакуум является своеобразной формой материи, способной при определенных условиях «рождать» вещественные частицы. Квантовая механика допускает, что вакуум может приходить в «возбужденное состояние», вследствие чего в нем может образоваться поле, а из него вещество. Рождение Вселенной «из ничего» означает ее самопроизвольное возникновение из вакуума в результате случайной флуктуации (случайное отклонение системы от равновесного положения). Флуктуация представляет собой появление виртуальных частиц, которые непрерывно рождаются и сразу же уничтожаются.

Между тем, сейчас, на самых различных структурных уровнях и отрезках пространственно-временной шкалы приходится допускать флуктуации как случайные, вероятностные отклонения от равновесных состояний. Необходимость и неизбежность возникновения сколь угодно больших неравновесных областей видел уже Л. Больцман более сотни лет назад. Во второй половине XX века появляется «вселенная Терлецкого», сплошь заполненная гигантскими флуктуациями; сейчас уже речь пошла о «статистической термодинамике гравитирующих систем» (то есть происходит своего рода переход от «специальной» теории флуктуации к «общей»). И в этой связи ученые говорят о вакууме как порождающей структуре, в некотором роде сам вакуум предстает как гигантская флуктуация. Так или иначе, флуктуации – не отклонения, а норма, или форма существования статистически равновесных состояний (К.П. Станюкович, И.Р. Плоткин), перехода на новые «листы развития».

Вакуум нашей Вселенной обладает вполне конкретными свойствами, определившими характер взаимодействий, специфику явлений, протекающих в нашем мире, размерность пространства, в котором мы живем. Возможно, наша Вселенная – это лишь мини-Вселенная, обитаемый островок, на котором возникла жизнь нашего типа. Инфляция (от лат. inflatio) означает «вздутие». Инфляционная стадия предполагает процесс вздутия Вселенной. При этом вакуум той эпохи Вселенной – «ложный» вакуум. Он отличается от истинного вакуума (считается, что истинный вакуум – это состояние с наинизшей энергией) тем, что обладает огромной энергией. Квантовая природа наделяет «ложный» вакуум стремлением к гравитационному отталкиванию, обеспечивающему его раздувание. Этот «ложный» вакуум представляет собой симметричное, но энергетически невыгодное, нестабильное состояние, что на языке физики означает стремление его к распаду. Эволюция Вселенной предстает в контексте инфляционной теории как синергетический самоорганизующийся процесс. Если встать на точку зрения модели Вселенной как замкнутой системы, то процессы самоорганизации могут быть рассмотрены в ней как взаимодействие двух открытых подсистем – физического вакуума и всевозможных микрочастиц и квантов полей. Считается, что в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до «большого взрыва». Дальнейший ход ее истории пролегал через критические точки – точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. В эти моменты энергия из вакуума перекачивалась в энергию тех частиц и полей, которые из вакуума же и рождались. Причем ход этой эволюции, выбор путей дальнейшего развития в моменты бифуркаций оказался именно таким, в результате которого появилась жизнь нашего типа.

Стоит отметить, что теория относительности соответствует двум разновидностям модели расширяющейся Вселенной. В первой из них кривизна пространства – времени отрицательна или в пределе равна нулю; в этом варианте все расстояния со временем неограниченно возрастают. Во второй разновидности модели кривизна положительна, пространство конечно, и в этом случае расширение со временем заменяется сжатием. В обоих вариантах теория относительности согласуется с нынешним эмпирически подтвержденным расширением Вселенной. Однако возникают вопросы: что же было тогда, когда не было ничего? что находится за пределами расширения? Первый вопрос, очевидно, противоречив сам по себе, второй выходит за рамки конкретной науки. Тем не менее, формулировки и возможные обоснования ответов на эти вопросы, являющиеся не столько научными, сколько натурфилософскими существуют.

Космогония считает бессмысленным вопрос о начале мира и о происхождении всей «большой вселенной». Весь опыт человечества показывает, что материя несотворима и неуничтожима, т.е. не возникает из ничего и не исчезает бесследно. Она лишь меняет форму своего существования. В основе научной космогонии лежат: закон сохранения энергии при возможности перехода ее различных видов друг в друга и закон сохранения вещества.

Космогония опирается не только на всю совокупность наук о природе, но и на философию. Основная трудность решения вопросов космогонии состоит в том, что небесные тела развиваются и меняются чрезвычайно медленно. В сравнении с возрастом науки возраст небесных тел необычайно велик. Галактика представляет собой гигантские скопления звезд и их систем, имеющие свой центр (ядро) и различную, не только сферическую, но часто спиралевидную, эллиптическую, сплюснутую или вообще неправильную форму. Галактик – миллиарды, и в каждой из них насчитывается миллиарды звезд. Наша галактика называется Млечный Путь и состоит из 150 млрд звезд. Она состоит из ядра и нескольких спиральных ветвей. Ее размеры – 100 000 световых лет. Большая часть звезд нашей галактики сосредоточена в гигантском «диске» толщиной 1500 световых лет. На расстоянии около 30 000 световых лет от центра галактики расположено Солнце. Ближе всего к нашей галактике «туманность Андромеды». Она названа так, потому что именно в созвездии Андромеды в 1917 году был открыт первый внегалактический объект.

Его принадлежность к другой галактике была доказана в 1923 году Э.Хабблом, нашедшим путем спектрального анализа в этом объекте звезды. А в 1963 году были открыты квазары – квазизвездные источники энергии, предположительно являющиеся протоядром новых галактик. Возможно, они представляют собой особую точку Вселенной, в которой сохранилось сверхплотное вещество. Открытие квазаров свидетельствует о том, что процесс образования новых галактик продолжается и поныне.

Неклассическое естествознание позволило разрешить классические парадоксы – фотометрический и гравитационный. Они связаны с тем, что при бесконечном количестве светил в бесконечной Вселенной мы должны были бы иметь залитое светом небо и, соответственно, бесконечную силу тяготения. Оба легко устраняются в концепции расширяющейся Вселенной. Выяснилось, что космологические парадоксы во многом порождены как раз идеализациями. Так, фотометрический парадокс не учитывает наличия потухших звезд (то есть вступает в противоречие даже с I началом термодинамики – законом сохранения энергии). Так же и «тепловая смерть» – она вытекает из объединения статистических закономерностей (энтропии) с представлением о равновесной, нестатистической Вселенной.

А вот о термодинамическом парадоксе следует сказать особо. Любые замкнутые (то есть не обменивающиеся взаимодействиями, информацией) системы ожидает, как уже говорилось, тепловая смерть – переход к состоянию максимального равновесия (или хаоса), в котором уже ничего не может произойти. Так что сама по себе идея расширения Вселенной еще не снимает вопроса. Однако в рамках этой концепции разработан ряд моделей незамкнутых вселенных, взаимодействующих между собой подобно микрочастицам. В ряде моделей вселенная «пульсирует», особые антиэнтропийные свойства порождает включение в картину космологической эволюции, жизни и разума, возможности изменения (эволюции) самих космологических постоянных. Конечно, неизбежно возникает вопрос: «Такая Вселенная (вселенные) – это реальность или теоретический конструкт?» Но о такой постановке вопроса уже говорилось чуть выше. По существу Вселенная (и как реальность, и как теоретический конструкт) – уникальный полигон для выработки и обкатки самых удивительных естественнонаучных идей.

Даже схематичная и общая характеристика идеи возникновения всего (Вселенной) из ничего, или из вакуума, вызывает у человека немало удивления. Но этим дело не ограничилось. По мере того как ученые проникали в детали этого процесса, перед ними открывались все более удивительные вещи. Одна из них связана с так называемым фундаментальными постоянными, которые нередко называют мировыми константами. Принято отличать простые постоянные величины от фундаментальных универсальных постоянных. Например, Земля имеет постоянную массу, но существуют другие планеты, масса которых существенно отлична от земной. Значит, масса планеты не является универсальной постоянной. Тогда как масса электрона или масса протона всюду во Вселенной одинакова, это – универсальные постоянные . Общее число фундаментальных универсальных постоянных невелико (заряд протона, постоянная Планка, скорость света, гравитационная постоянная Ньютона и т.д.). Но оказывается, что для довольно полного описания природы требуется совсем немного таких параметров. Причем, они чуть ли не однозначно определяют строение и свойства физических объектов Вселенной. А поскольку эти постоянные возникли на ранних этапах Вселенной, когда объектов даже не существовало, то мы очевидно имеем право утверждать, что универсальные постоянные предопределяют структуру нашей Вселенной. Этот вопрос приобретает еще большую остроту, если учесть, что мировые константы не изолированы, а очень тонко подстроены друг под друга и оказывают свое влияние на структуру и свойства Вселенной в разных сочетаниях и все вместе как согласованный ансамбль. Может ли возникнуть такое совпадение случайно?

По мере проникновения в тайны строения физического мира от элементарных частиц до галактик ученые не перестают удивляться точно «подобранным» значениям фундаментальных постоянных, удивительному совпадению ряда чисел, построенных из этих фундаментальных постоянных, так называемой «тонкой подстройкой» Вселенной. А если бы в природе реализовалась другая последовательность чисел, какой была бы тогда Вселенная?

Удивительные свойства природы открываются в своеобразной игре фундаментальных природных констант , и оказывается, что в так называемой постоянной тонкой структуре (в ядерной физике) задействованы числа « золотого сечения» (а = 1/137), что существуют поразительные совпадения значений констант в самых различных областях естествознания, взаимосвязь между нижними и верхними пределами шкалы констант.

На протяжении всей истории познания человеческий разум ищет в бесконечном разнообразии окружающего мира повторяемость, устойчивость – константы, инварианты, симметрии. Действительно, такой поиск всегда был путеводной нитью для естествознания. Но стоит найти одну группу инвариантов (величин, законов, остающихся неизменными при определенных преобразованиях), ту или иную форму симметричности, как вскоре обнаруживаются их нарушения в определенных условиях, вынуждающие искать новые, более фундаментальные.

Сама природа подсказывает нам, что элементарные частицы являются своего рода узловыми точками, сгущениями некоего единого поля, а раз так, то первостепенная задача создать теорию такого единого поля, или единую теорию поля . Чтобы представить себе масштабность такой задачи и одновременно перспективы, открывающиеся ее решением, приведем масштаб природных величин и процессов от атомных до космологических порядков. Радиус протона равен 10 -15 см, а радиус наблюдаемой Вселенной 10 28 см (10 миллиардов световых лет, т. е. расстояние, которое свет пройдет за 10 000 000 000 лет!). На всем диапазоне этой шкалы, охватывающей 43 порядка, природа «играет» четырьмя основными типами взаимодействий. Это:

1) «сильные» взаимодействия между адронами (от греч. адрос – сильный), к которым относятся барионы (от греч. бариос – тяжесть), нуклоны (протоны и нейтроны), гипероны и мезоны. Сильные взаимодействия возможны только на больших (по меркам микромира) расстояниях (10~ 13 см и состоят в испускании промежуточных частиц, переносящих ядерные силы (пи-мезонов). Одно из проявлений сильных взаимодействий – ядерные силы ;

2) электромагнитные взаимодействия , которые в 100–1000 раз слабее «сильных» и сопровождаются испусканием или поглощением фотонов;

3) «слабые» взаимодействия , радиус действия которых еще на порядок меньше электромагнитных. Именно за счет таких взаимодействий светит Солнце (протон превращается в нейтрон, позитрон – в нейтрино). Испускаемые нейтрино имеют огромную проникающую способность, они могут пройти через железную плиту толщиной 1 млрд. км. «Слабые» взаимодействия происходят не контактным образом, а через обмен бозонами, виртуальными и нестабильными;

Учебное пособие

Беларусь в качестве учебного пособия для учащихся средних специальных учебных заведений электротехнических специальностей... и электроэнергии; рациональное исполь­зование электроэнергии. В учебном пособии значительное внимание уделено решению указанных...

  • Учебное пособие (37)

    Учебное пособие

    Теоретических положений, поскольку в процессе написания учебного пособия были использованы изданные в последнее время... и освоить формы самостоятельного контроля. Данное учебное пособие издается повторно, с дополнениями и изменениями. Оно...

  • Учебные пособия (2)

    Учебники и учебные пособия

    УЧЕБНЫЕ ПОСОБИЯ Сотникова С.И. Музеология: Пособие для вузов. – М., 2004. Лысикова О.В. Музеи мира: Учебное пособие . – М., 2002. Музейное дело... . 152 с. Ревякин В.И. Художественные музеи: Справ. пособие . 2-е изд., перераб. и доп. М.: Стройиздат, 1991 ...

  • Учебное пособие (5)

    Учебное пособие

    Учебное пособие учебных

  • Учебное пособие (25)

    Учебное пособие

    Учебное пособие П Л А В А Н И Е П Р И К Л А Д Н О Е П Л А В А Н И Е ЛАСТОЧКИНА Е. В., АРХИПОВА Р. Э., ВАЩУК О. В., ЛЕОНТЮК А. М., СОКОЛОВА С. С. ... обучение плаванию было введено в программу учебных дисциплин сначала в Морской академии, а затем...

  • ВСЕЛЕННАЯ (от греч. «ойкумена» – населенная, обитаемая земля) – «все существующее», «всеобъемлющее мировое целое», «тотальность всех вещей»; смысл этих терминов многозначен и определяется концептуальным контекстом. Можно выделить по крайней мере три уровня понятия «Вселенная».

    1. Вселенная как философская идея имеет смысл, близкий понятию «универсум», или «мир»: «материальный мир», «сотворенное бытие» и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.

    2. Вселенная в физической космологии, или Вселенная как целое, – объект космологических экстраполяций. В традиционном смысле – всеобъемлющая, неограниченная и принципиально единственная физическая система («Вселенная издана в одном экземпляре» – А.Пуанкаре); материальный мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала. Такое понимание Вселенной как целого обосновывалось по-разному: 1) ссылкой на «презумпцию экстраполи-руемости»: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически – Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала образ Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной. Общепринято, что бесконечная гомогенная Вселенная Ньютона «разрушила» античный космос. Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга. Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.

    В неклассической, релятивистской космологии была впервые построена теория Вселенной. Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т.е. имела начало. А.А.Фридман считал, что мир, или Вселенная как объект космологии, «бесконечно уже и меньше мира-вселенной философа». Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный момент расширения Метагалактики рассматривался как абсолютное «начало всего», с креационистской точки зрения – как «сотворение мира». Некоторые космологи-релятивисты, считая принцип единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику – лишь как ограниченную часть Вселенной.

    Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира. В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился антропный принцип в космологии.

    Современный подход к интерпретации Вселенной как целого основывается, во-первых, на разграничении философской идеи мира и Вселенной как объекта космологии; во-вторых, это понятие релятивизируется, т.е. его объем соотносится с определенной ступенью познания, космологической теорией или моделью – в чисто лингвистическом (безотносительно к их объектному статусу) или же в объектном смысле. Вселенная интерпретировалась, напр., как «наибольшее множество событий, к которому могут быть применены наши физические законы, экстраполированные тем или иным образом» или «могли бы считаться физически связанными с нами» (Г.Бонди).

    Развитием этого подхода явилась концепция, согласно которой Вселенная в космологии – это «все существующее» не в каком-то абсолютном смысле, а лишь с точки зрения данной космологической теории, т.е. физическая система наибольшего масштаба и порядка, существование которой вытекает из определенной системы физического знания. Это относительная и преходящая граница познанного мегамира, определяемая возможностями экстраполяции системы физического знания. Под Вселенной как целым не во всех случаях подразумевается один и тот же «оригинал». Напротив, разные теории могут иметь в качестве своего объекта неодинаковые оригиналы, т.е. физические системы разного порядка и масштаба структурной иерархии. Но все претензии на репрезентацию всеобъемлющего мирового целого в абсолютном смысле остаются бездоказательными. При интерпретации Вселенной в космологии следует проводить различие между потенциально и актуально существующим. То, что сегодня считается несуществующим, завтра может вступить в сферу научного исследования, окажется существующим (с точки зрения физики) и будет включено в наше понимание Вселенной. Так, если теория расширяющейся Вселенной описывала по сути нашу Метагалактику, то наиболее популярная в современной космологии теория инфляционной («раздувающейся») Вселенной вводит понятие о множестве «других вселенных» (или, в терминах эмпирического языка, внеметагалак-тических объектов) с качественно различными свойствами. Инфляционная теория признает, т.о., мегаскопическое нарушение принципа единообразия Вселенной и вводит дополнительный ему по смыслу принцип бесконечного многообразия Вселенной. Тотальность этих вселенных И.С.Шкловский предложил назвать «Метавселенной». Инфляционная космология в специфической форме возрождает, т.о., идею бесконечности Вселенной (Метавселенной) как ее бесконечного многообразия. Объекты, подобные Метагалактике, в инфляционной космологии часто называют «минивселенными». Минивселенные возникают путем спонтанных флуктуаций физического вакуума. Из этой точки зрения вытекает, что начальный момент расширения нашей Вселенной, Метагалактики не обязательно должен считаться абсолютным началом всего. Это лишь начальный момент эволюции и самоорганизации одной из космических систем. В некоторых вариантах квантовой космологии понятие Вселенной тесно увязывается с существованием наблюдателя («принцип соучастия»). «Порождая на некотором ограниченном этапе своего существования наблюдателей-участников, не приобретает ли, в свою очередь, Вселенная посредством их наблюдений ту осязаемость, которую мы называем реальностью? Не есть ли это механизм существования?» (А.Дж.Уилер). Смысл понятия Вселенной и в этом случае определяется теорией, основанной на различении потенциального и актуального существования Вселенной как целого в свете квантового принципа.

    3. Вселенная в астрономии (наблюдаемая, или астрономическая Вселенная) – область мира, охваченная наблюдениями, а сейчас отчасти и космическими экспериментами, т.е. «все существующее» с точки зрения имеющихся в астрономии наблюдательных средств и методов исследования. Астрономическая Вселенная представляет собой иерархию космических систем возрастающего масштаба и порядка сложности, которые последовательно открывались и исследовались наукой. Это – Солнечная система, наша звездная система, Галактика (существование которой было доказано В.Гершелем в 18 в.), Метагалактика, открытая Э.Хабблом в 1920-х гг. В настоящее время наблюдению доступны объекты Вселенной, удаленные от нас на расстоянии ок. 9–12 млрд световых лет.

    На протяжении всей истории астрономии вплоть до 2-й пол. 20 в. в астрономической Вселенной были известны одни и те же типы небесных тел: планеты, звезды, газопылевое вещество. Современная астрономия открыла принципиально новые, ранее не известные типы небесных тел, в т.ч. сверхплотные объекты в ядрах галактик (возможно, представляющие собой черные дыры). Многие состояния небесных тел в астрономической Вселенной оказались резко нестационарными, неустойчивыми, т.е. находящимися в точках бифуркации. Предполагается, что подавляющая часть (до 90–95%) вещества астрономической Вселенной сосредоточена в невидимых, пока ненаблюдаемых формах («скрытая масса»).

    Литература:

    1. Фридман А.А. Избр. труды. М., 1965;

    2. Бесконечность и Вселенная. М., 1970;

    3. Вселенная, астрономия, философия. М, 1988;

    4. Астрономия и современная картина мира. М., 1996;

    5. Bondy H. Cosmology. Cambr., 1952;

    6. Munitz M. Space, Time and Creation. N.Y., 1965.

    В.В.Казютинский

    Поделиться