Что характеризует внутреннее трение. Явление внутреннего трения (вязкость). Зависимость вязкости от температуры и давления. Вискозиметры

Трение. Вязкость - внутреннее трение

Трение - широко распространенное явление. Трение при соприкосновении твердых тел характеризуется коэффициентом трения скольжения (рис. 4.5, a ). В курсах теоретической механики изучают еще и трение качения (как всегда все сводится к связи поступательного и вращательного движений). В жидкостях и газах тела при движении испытывают вязкое трение (рис. 4.5, б ). Важно, что всякая сила трения связана со скоростью . Сила трения направлена противоположно скорости. Сила вязкого трения еще вдобавок и по величине пропорциональна скорости .

Рис. 4.5. Сила трения, действующая на движущееся тело: а - сила трения скольжения F тр = μN , μ - коэффициент трения (скольжения); б - сила вязкого трения F тр = γV = ηAV , γ - коэффициент трения (вязкого трения), η - коэффициент вязкости. Для шара величина А = 6πr и F тр = 6πηrV

Так как силы трения зависят от скорости, то они не консервативны. Работа этих сила изменяет внутреннюю энергию «трущейся пары», а не служит для преобразования кинетической и потенциальной энергий тела друг в друга, как работа консервативных сил (упругости, тяготения, кулоновской). Отметим, что неконсервативной является и сила давления газа F = рS , ведь давление газа (или жидкости) связано с молекулярными движениями, например, в газе давление пропорционально среднему квадрату скорости р ~ áV 2ñ.

Таким образом, явления, связанные с трением, находятся в связи и с механикой (скорость), и с молекулярной физикой(работа сил трения дает изменение внутренней энергии ). Такая двойственность приводит к изменениям в трактовке некоторых положений механики. Например, неприменимым становится положение об относительности покоя и движения . Когда действуют только консервативные силы, то невозможно различить равномерное движение или покой. Относительно Земли - покоимся (Кто не крутится на своем месте!), а относительно Солнца? Другое дело, если в игре есть и силы трения. Тогда при движении (даже равномерном) выделяется теплота. При учете сил трения равновесие сил наступает только при движении.

В конечном итоге это изменение возникает из-за того, что, согласно второму закону Ньютона, результат силы - ускорение, но сила трения может изменять равнодействующую силу так, что наступит равновесие и ускорения не будет. Именно путаница в этом вопросе не позволила открыть законы механики древним. Аристотель видел: две лошади - одна скорость повозки; три лошади - больше скорость повозки, следовательно, делал вывод Аристотель, скорость пропорциональна числу «лошадей», или пропорциональна силе тяги, или, вообще, пропорциональна силе. Аристотель считал, что скорость пропорциональна силе. В действительности, при увеличении силы тяги ускорение появляется, но из-за увеличения скорости увеличивается и сила трения, и очень быстро наступает равновесие при этой новой скорости. Аристотель перехода не видел. Во множестве других случаев «закон Аристотеля» не соответствовал наблюдениям. Кто движет планеты? Где лошади? Ньютон сделал «наукой» механику, когда сумел объединить и «земные», и «небесные» движения. Аристотель умел объяснять только «земные».

Возвращаясь к явлениям трения, можно сказать, что в этих явлениях всегда есть выделенная система отсчета - та, «обо что трется» тело, и силы трения зависят именно от скорости движения относительно этой системы. Сила трения «переводит» энергию движения во внутреннюю энергию именно тела (среды), о которое трется движущееся тело, и тем самым выделяет его, выделяет из всех других тел.

Итак, если силы консервативны - все движущиеся друг относительно друга с постоянными скоростями системы отсчета (они называются инерциальными ) равноправны, покой и движение с постоянной скоростью - относительны. Если силы не консервативны - зависят от скорости, то есть выделенная система отсчета - та, во внутреннюю энергию которой переходит энергия движения. Теперь покой и движение относительно этой выделенной системы можно легко различить. Если есть «перекачка» энергии движения во внутреннюю - есть движение, нет перекачки - покой.

Рассматривая только трение при движении в жидкости или газе, используют характеристику такого явления, называемую коэффициентом вязкости , часто говорят - просто вязкость η. Вязкость характеризует именно свойства среды - жидкости или газа. Отсюда следует, что вязкость не зависит от свойств движущегося тела (размеров или скорости, или еще чего-нибудь), а зависит только от характеристик среды (давления, температуры, либо еще каких-то), в которой происходит движение. В конечном итоге коэффициент вязкости зависит от свойств молекул среды, в которой движется тело.

Эти свойства легче всего выявить, рассматривая явление внутреннего трения . Действительно, не все ли равно, движется тело относительно газа (жидкость) или одна часть жидкости (газа) движется относительно другой. И в том, и в другом случае должно наблюдаться явление перекачки энергии макроскопического движения (движения чего-то «большого» - тела или части жидкости) во внутреннюю энергию - движения молекул - микроскопических (малых) частиц.

Явление внутреннего трения (часто называемое явлением вязкости ) связано с возникновением сил трения между слоями газа или жидкости , перемещающимися параллельно друг другу с различными по величине скоростями, при этом происходит выравнивание скоростей . Силы трения , которыепри этом возникают, направлены по касательной к поверхности соприкосновения слоев .

Рассмотрим механизм вязкости газов. Почему соседние слои тормозят друг друга при своем движении? Следующая модель поможет разобраться в этом: представим лодки, движущиеся вниз по реке с разными скоростями (рис. 6.6 ).

Рис. 4.6. К объяснению механизма вязкости. Подробности в тексте

Чем ближе лодки к центру реки, тем больше стараются гребцы. На лодках перевозят арбузы. Торговки решают обменяться товаром. Арбузы имеют скорость лодки, в которой они находятся. Поэтому при перебрасывании «быстрых» арбузов в медленно движущиеся лодки последние ускоряются; быстрые же лодки замедляют свое движение при попадании в них медленно движущихся арбузов.

Явление внутреннего трения подчиняется закону Ньютона для вязкого трения(часто готворят и «формула Ньютона для вязкого трения» ):

После всего сказанного эта формула кажется составленной просто «руками». Действительно: коэффициент вязкости η показывает происхождение этой силы от «трения», dV /dx показывает изменение скорости движения слоев друг относительно друга, ведь dV /dx изменение скорости на единицу длины - это предел от (V 2 – V 1)/(x 2 – х 1). Очевидно, что формула Ньютона имеет вид уравнения переноса (тип закона Фика) (4.13 ). Справа - производная (градиент), слева должен быть поток . Поток - это что-то протекающее через единицу площади S в единицу времени Δt . Площадь на нужном месте в формуле есть - стоит F /S . Следовательно, хорошо бы представить и силу как производную от «чего-то» по времени. Вспоминая второй закон Ньютона, можно увидеть, что силу можно представить как

То есть сила есть производная от импульса .

Таким образом, формула Ньютона - формула для переноса импульса . На молекулярном уровне отсюда следует, что трение между текущими (движущимися) с разными скоростями слоями жидкости или газа состоит в передаче молекул от слоя с большей скоростью в слой с меньшей скоростью (рис. 4.7 ).

Рис. 4.7. К объяснению закона вязкости. V + = V 0 + DV = V + l tgα

Все явления переноса в газе аналогичны. Это наглядно видно из соответствующих рисунков (сравните рис. 4.2 , 4.4 и 4.7 ). Диффузии соответствует разность концентраций, теплопроводности - разность внутренних энергий, внутреннему трению (вязкости) - разность скоростей в перпендикулярном силе трения (потоку импульса) направлении. Объемы же, из которых молекулы за время Δt успевают поменять «место жительства», одинаковы. Поэтому, рассчитывая поток, так же как это делалось уже дважды, найдем поток импульса:

Сравнивая с формулой Ньютона, найдем, что коэффициент вязкости имеет вид:

Эта формула хороша для газов и позволяет анализировать зависимости коэффициента вязкости от параметров газа. Для жидкостей - коэффициент вязкости - характеристика жидкости приводится в справочниках.

Часто вместо коэффициента вязкости вводят так называемый коэффициент кинематической вязкости :

В итоге закон трения (закон Ньютона) имеет форму

Величина Р - поток импульса.

Подводя итоги изучения сил вязкого трения, отметим еще раз, что сила, действующая на «тело», пропорциональна скорости V , а сила, действующая на «слой», пропорциональна производной от скорости dV /dx . Для жидкостей с большой вязкостью, когда отдельный слой превращается как бы в «плоское тело», это различие несущественно. Действительно, в таких условиях:

где а - толщина пограничного слоя, толщина жидкости, на которой значительно меняется скорость.

Силу вязкого трения, создаваемую движущимся в жидкости или газе телом (рис. 4.5, б ), называют силой Стокса . Тело приводит в движение жидкость перед собой, а вдали от тела жидкость покоится. Так возникает разность скоростей между слоями. Запись силы Стокса (формула Стокса ) получается прямо из закона Ньютона для вязкого трения (4.33 ). Применим метод анализа размерностей.

Производную в этой формуле заменим величиной той же размерности V /a , где а - как обычно (см. формулу (4.39 )), толщина жидкости, на которой значительно меняется скорость. После такой замены в законе Ньютона для силы вязкого трения возникает величина S /a , имеющая размерность длины (м). В решаемой задаче имеется только одна величина такой размерности, это размер тела. Если тело - шар, то это радиус шара r (см. рис. 4..5, б ). Теперь, когда все размерные зависимости определены, остается неопределенным числовой множитель. Оказывается, что этот множитель зависит от формы тела. Для шара он равен 6π. Получаем окончательно формулу Стокса :

F = 6πr ηV . (4.40)

) механическую энергию, сообщенную телу во время его деформации. Внутреннее трение проявляется, например, в затухании свободных колебаний. В жидкостях и газах подобный процесс принято называть вязкостью. Внутреннее трение в твердых телах связано с двумя различными группами явлений - неупругостью и пластической деформацией.

Неупругость представляет собой отклонение от свойств упругости при деформировании тела в условиях, когда остаточные деформации практически отсутствуют. При деформировании с конечной скоростью в теле возникает отклонение от теплового равновесия. Например, при изгибе равномерно нагретой тонкой пластинки, материал которой расширяется при нагревании, растянутые волокна охладятся, сжатые - нагреются, вследствие чего возникнет поперечный перепад температуры, то есть упругое деформирование вызовет нарушение теплового равновесия. Последующее выравнивание температуры путем теплопроводности представляет собой процесс, сопровождаемый необратимым переходом части упругой энергии в тепловую. Этим объясняется наблюдаемое на опыте затухание свободных изгибных колебаний пластинки - так называемый термоупругий эффект. Такой процесс восстановления нарушенного равновесия называется релаксацией.

При упругом деформировании сплава с равномерным распределением атомов различных компонентов может произойти перераспределение атомов в веществе, связанное с различием их размеров. Восстановление равновесного распределения атомов путем диффузии также представляет собой релаксационный процесс. Проявлениями неупругих, или релаксационных, свойств, также являются упругое последействие в чистых металлах и сплавах, упругий гистерезис.

Деформация, возникающая в упругом теле, зависит не только от приложенных к нему внешних механических сил, но и от температуры тела, его химического состава, внешних магнитных и электрических полей (магнитострикция и электрострикция), величины зерна. Это приводит к многообразию релаксационных явлений, каждое из которых вносит свой вклад во внутреннее трение. Если в теле одновременно происходит несколько релаксационных процессов, каждый из которых можно характеризовать своим временем релаксации , то совокупность всех времен релаксации отдельных релаксационных процессов образует так называемый релаксационный спектр данного материала; каждое структурное изменение в образце меняет релаксационный спектр.

В качестве методов измерения внутреннего трения применяются: изучение затухания свободных колебаний (продольных, поперечных, крутильных, изгибных); изучение резонансной кривой для вынужденных колебаний; относительное рассеяние упругой энергии за один период колебаний. Изучение внутреннего трения твердых тел представляет собой область физики твердого тела, является источником сведений о процессах, возникающих в твердых телах, в частности в чистых металлах и сплавах, подвергнутых механическим и тепловым обработкам.
Если силы, действующие на твердое тело, превосходят предел упругости и возникает пластическое течение, то можно говорить о квазивязком сопротивлении течению (по аналогии с вязкой жидкостью). Механизм внутреннего трения при пластической деформации существенно отличается от механизма внутреннего трения при неупругости. Различие в механизмах рассеяния энергии определяет разницу в значениях вязкости, отличающихся на 5-7 порядков. По мере роста амплитуды упругих колебаний большую роль в затухании этих колебаний начинают играть пластические сдвиги, величина вязкости растет, приближаясь к значениям пластической вязкости.

Коэффициент вязкости .

Вязкость – одно из важнейших явлений, наблюдающихся при движении реальной жидкости.

Всем реальным жидкостям (и газам) в той или иной степени присуща вязкость или внутреннее трение. При течении реальной жидкости между ее слоями возникают силы трения. Эти силы получили название сил внутреннего трения или вязкости.

Вязкость – это трение между перемещаемыми относительно друг друга слоями жидкости (или газа).

Силы вязкости (внутреннего трения) направлены по касательной к соприкасающимся слоям жидкости и противодействуют перемещению этих слоев относительно друг друга. Они тормозят слой с большей скоростью и ускоряют медленный слой. Можно указать две основные причины, обуславливающие вязкость:

Во-первых, силы взаимодействия между молекулами соприкасающихся слоев, движущихся с различными скоростями;

Во-вторых, переход молекул из слоя в слой, и связанный с этим перенос импульса.

Вследствие этих причин слои взаимодействуют друг с другом, медленный слой ускоряется, быстрый замедляется. В жидкостях ярче выражена первая причина, в газах – вторая.

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. Возьмем две горизонтальные пластины со слоем жидкости между ними (рис.9). Верхнюю пластину приведем в движение с постоянной скоростью . Для этого к пластине надо приложить силу
для преодоления силы трения
, действующей на пластину при ее движении в жидкости. Слой жидкости, прилегающий непосредственно к верхней пластине, благодаря смачиванию прилипает к пластине и движется вместе с ней. Слой жидкости, прилипший к нижней пластине, удерживается вместе с ней в покое,
. Промежуточные слои движутся так, что каждый верхний из них обладает скоростью большей, чем под ним лежащий. Стрелками на рис.9 показан «профиль скорости» потока. Вдоль осиr, перпендикулярной вектору , скорость нарастает. Измерение скорости характеризуют величиной.

Величина показывает, какое измерение скорости приходится на единицу длины вдоль направления изменения скорости, т.е.определяет быстроту изменения скорости и направления, перпендикулярной самой скорости. От этой величины зависит трение между слоями. Величинаизмеряется в
.

Ньютон установил, что сила трения между двумя слоями жидкости прямо пропорциональна площади соприкосновения слоев и величине:


. (13)

Формула (13) называется формулой Ньютона для вязкого трения. Коэффициент пропорциональности получил название коэффициента вязкости (внутреннего трения). Из (13) видно, что

В системе
единицей измерения коэффициента вязкости является

(паскаль – секунда),

в СГС – системе коэффициент вязкости измеряется в
(пуазах), причем

Жидкости, для которых выполняется формула Ньютона (13) называют ньютоновскими. Для таких жидкостей коэффициент вязкости зависит только от температуры. Из биологических к ньютоновским жидкостям можно отнести плазму крови, лимфу. Для многих реальных жидкостей соотношение (13) строго не выполняется. Такие жидкости называют неньютоновскими. Для них коэффициент вязкости зависит от температуры, давления и ряда других величин. К таким жидкостям относятся жидкости с крупными сложными молекулами, например, цельная кровь.

Вязкость крови здорового человека
, при паталогии колеблется от, что сказывается на скорости оседания эритроцитов. Вязкость венозной крови больше, чем артериальной.

Внутреннее трение I Вну́треннее тре́ние II Вну́треннее тре́ние

в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механическую энергию, сообщенную телу в процессе его деформирования. В. т. связано с двумя различными группами явлений - неупругостью и пластической деформацией.

Неупругость представляет собой отклонение от свойств упругости при деформировании тела в условиях, когда остаточные деформации практически отсутствуют. При деформировании с конечной скоростью в теле возникает отклонение от теплового равновесия. Например, при изгибе равномерно нагретой тонкой пластинки, материал которой расширяется при нагревании, растянутые волокна охладятся, сжатые - нагреются, вследствие чего возникнет поперечный перепад температуры, т. е. упругое деформирование вызовет нарушение теплового равновесия. Последующее выравнивание температуры путём теплопроводности представляет собой процесс, сопровождаемый необратимым переходом части упругой энергии в тепловую. Этим объясняется наблюдаемое на опыте затухание свободных изгибных колебаний пластинки -так называемый Термоупругий эффект . Такой процесс восстановления нарушенного равновесия называется релаксацией (См. Релаксация).

При упругом деформировании сплава с равномерным распределением атомов различных компонентов может произойти перераспределение атомов в веществе, связанное с различием их размеров. Восстановление равновесного распределения атомов путём диффузии (См. Диффузия) также представляет собой релаксационный процесс. Проявлениями неупругих, или релаксационных, свойств, кроме упомянутых, являются упругое Последействие в чистых металлах и сплавах, упругий Гистерезис и др.

Деформация, возникающая в упругом теле, зависит не только от приложенных к нему внешних механических сил, но и от температуры тела, его химического состава, внешних магнитных и электрических полей (магнито- и электрострикция), величины зерна и т.д. Это приводит к многообразию релаксационных явлений, каждое из которых вносит свой вклад во В. т. Если в теле одновременно происходит несколько релаксационных процессов, каждый из которых можно характеризовать своим временем релаксации (См. Релаксация) τ i , то совокупность всех времён релаксации отдельных релаксационных процессов образует так называемый релаксационный спектр данного материала (рис. ), характеризующий данный материал при данных условиях; каждое структурное изменение в образце меняет релаксационный спектр.

В качестве методов измерения В. т. применяются: изучение затухания свободных колебаний (продольных, поперечных, крутильных, изгибных); изучение резонансной кривой для вынужденных колебаний (См. Вынужденные колебания); относительное рассеяние упругой энергии за один период колебаний. Изучение В. т. твёрдых тел представляет собой новую быстро развивающуюся область физики твёрдого тела, является источником важных сведений о процессах, возникающих в твёрдых телах, в частности в чистых металлах и сплавах, подвергнутых различным механическим и тепловым обработкам.

В. т. при пластической деформации. Если силы, действующие на твёрдое тело, превосходят предел упругости и возникает пластическое течение, то можно говорить о квазивязком сопротивлении течению (по аналогии с вязкой жидкостью). Механизм В. т. при пластической деформации существенно отличается от механизма В. т. при неупругости (см. Пластичность , Ползучесть). Различие в механизмах рассеяния энергии определяет и разницу в значениях вязкости, отличающихся на 5-7 порядков (вязкость пластического течения, достигающая величин 10 13 -10 8 н ·сек/м 2 , всегда значительно выше вязкости, вычисляемой из упругих колебаний и равной 10 7 - 10 8 н ·сек/м 2). По мере роста амплитуды упругих колебаний всё большую роль в затухании этих колебаний начинают играть пластические сдвиги, и величина вязкости растёт, приближаясь к значениям пластической вязкости.

Лит.: Новик А. С., Внутреннее трение в металлах, в кн.: Успехи физики металлов. Сб. статей, пер. с англ., ч. 1, М., 1956; Постников В. С., Релаксационные явления в металлах и сплавах, подвергнутых деформированию, «Успехи физических наук», 1954, т. 53, в. 1, с. 87; его же, Температурная зависимость внутреннего трения чистых металлов и сплавов, там же, 1958, т. 66, в. 1, с. 43.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Внутреннее трение" в других словарях:

    1) свойство твердых тел необратимо поглощать механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, напр., в затухании свободных колебаний.2) В жидкостях и газах то же, что вязкость … Большой Энциклопедический словарь

    ВНУТРЕННЕЕ ТРЕНИЕ, то же, что вязкость … Современная энциклопедия

    В твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механич. энергию, сообщённую телу в процессе его деформирования. В. т. связана с двумя разл. группами явлений неупругостью и пластич. деформацией. Неупругость представляет… … Физическая энциклопедия - 1) свойство твердых тел необратимо превращать в теплоту механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, например, в затухании свободных колебаний. 2) В жидкостях и газах то же, что вязкость. * * *… … Энциклопедический словарь

    Internal friction Внутреннее трение. Преобразование энергии в тепло под воздействием колебательного напряжения материала. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал, НПО Мир и семья; Санкт Петербург … Словарь металлургических терминов

    Вязкость (внутреннее трение) свойство растворов, характеризующее сопротивление действию внешних сил, вызывающих их течение. (Смотри: СП 82 101 98. Приготовление и применение растворов строительных.)

Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений , возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.

Физический смысл вязкости

Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ 1

Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ 1 .

Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.

Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде

где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения

μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.

Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.

Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу

Вязкость кинематическая, динамическая и абсолютная

Теперь определимся с различными понятиям вязкости:

Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.

Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.

Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.

Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести

Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.

Коэффициент вязкости жидкости

В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости

где ρ – плотность жидкости.

Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.

В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).

Вязкость некоторых жидкостей

Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью

Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.

Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.

Вязкость жидкостей, как установлено из опытов, зависит так же и от давления . Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.

Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.

Методы измерения вязкости. Метод Стокса.

Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.

Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.

Существует следующие методы определения вязкости жидкости.

Капиллярный метод.

Сущность этого метода заключается в использовании сообщающихся сосудов . Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.

Метод по Гессе.

Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.

Ротационный метод.

Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.

Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.

Метод Стокса

Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.

Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.

Видео по теме вязкости

Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.

Поделиться