Полиамиды. Классификация по методу получения. Выход и молекулярная масса полиамида зависят




Температура плавления 210–260 °С; Нейлон-6,6 разрушается сильными кислотами, но устойчив к щелочам. Он также устойчив к большинству органических растворителей, но может быть растворён в муравьиной кислоте или феноле. Восприимчив к действию ультрафиолета. Если намочить нейлон то он потеряет от 7 до 20%своей прочности Прочность не уменьшается при низких температурах до -40°C Молекулярная масса 8–40 тыс. Плотность 1010–1140 кг/м3 Физические свойства


Нейлон-66 синтезируется поликонденсацией адипиновой кислоты и гексаметилендиамина. Для получения полимера с максимальной молекулярной массой, используется соль адипиновой кислоты и гексаметилендиамина (АГ-соль): Синтез найлона-6 (капрона) из капролактама проводится гидролитической полимеризацией капролактама по механизму «раскрытие цикла присоединение»: Химические свойства


Текстильная промышленность- женские чулки, куртки, носки, зонты, свадебные вуали, спортивный инвентарь,ковровые покрытия, веревки, для производства трикотажа, для создания парашютов, бронежилетов, военной формы, спасательных жилетов. Автомобильная промышленность- Колпаки автомобильных колес. Корпус зеркала заднего вида. Кожухи вентиляторов. Подогреватель воды омывателя ветрового стекла. Кожухи подвесных моторов. Бачки радиаторов. Крышки головки блока цилиндров … Приборостроение- Стойки, заклепки, загушки, винты, кнопки, втулки, шайбы. Скобы, хомуты, держатели, стяжки для крепления проводов и кабелей. Медицина- зубное протезирование, для регенерации и замены кости Машиностроение- создания литейных форм Электропромышленность- Полимерные батареи Используется также в 3D печатание Из нейлона делают оправы для очков, рыболовные сети, струны для гитары Применение


Преимущества и недостатки *Отличные противоударные свойства. *Хорошие механические свойства. Эластичность полиамида-6,6 выше, чем у ацетата целлюлозы, он меньше снашивается и на 15% легче его. *Его прозрачность позволяет добиться особого блеска и оригинальных цветовых эффектов. *отличается мягкостью и легкостью *Тенденция к высыханию, вследствие чего материал становится хрупким. *Ограниченные возможности окрашивания в массе. *Чувствительность к воздействию ультрафиолетового излучения (желтеет).


Название этого материала - состоит из двух слов: N.Y. (Нью-Йорк) и Lon (Лондон). Впервые произведен 28 февраля 1935 года Уоллисом Каразесом в Дюпонте. Нейлон первое синтетическое волокно, которое было сделано полностью из угля, воды и воздуха. Известные производители- «Honeywell Nylon Inc», «Invista», «Wellman Inc»,«Dupont» Зубные щётки из нейлона - это как напильник, который стирает эмаль и портит десны и не только. Это интересно











1 из 10

Презентация на тему: Полимеры Применение

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

ПолимерыНеорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер - это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры - вещества с молекулярной массой от нескольких тысяч до нескольких миллионов

№ слайда 3

Описание слайда:

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей - реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей - реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.В строении полимера можно выделить мономерное звено - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (-СН2-CHCl-)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

№ слайда 4

Описание слайда:

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

№ слайда 5

Описание слайда:

ОсобенностиОсобые механические свойстваэластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).Особенности растворов полимеров:высокая вязкость раствора при малой концентрации полимера;растворение полимера происходит через стадию набухания.Особые химические свойства:способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

№ слайда 6

Описание слайда:

КлассификацияПо химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.Органические полимеры.Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель - кремнийорганические соединения.

№ слайда 7

Описание слайда:

Полимеры подразделяютПолимеры подразделяютпо полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей - молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями - неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

№ слайда 8

Описание слайда:

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле

№ слайда 9

Описание слайда:

ПрименениеМатериалы, получаемые на основе полимеров1. На основе полимеров получают волокна путем продавливания растворов или расплавов через фильеры с последующим затвердеванием это полиамиды, полиакрилонитрилы и др.2. Полимерные пленки получают продавливанием через фильеры с щелевидными отверстиями или нанесением на движущую ленту. Их используют как электроизоляционный и упаковочный материал, основы магнитных лент. 3. Лаки растворы пленкообразующих веществ в органических растворителях.4. Клеи, композиции способные соединять различные материалы вследствие образования прочных связей между их поверхностями клеевой прослойкой.5. Пластмассы6. Композиты композиционные материалы полимерная основа, армированная наполнителем.

№ слайда 10

Описание слайда:

Области применения полимеров Области применения полимеров 1. Полиэтилен устойчив к агрессивной среде, влагонепроницаем, является диэлектриком. Из него изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки, оболочки кабелей телефонных и силовых линий.2. Полипропилен механически прочен, стоек к изгибам, истиранию, эластичен. Применяют для изготовления труб, пленок, аккумуляторных баков и др.3. Полистирол устойчив к действию кислот. Механически прочен, является диэлектриком Используется как электроизоляционный и конструкционный материал в электротехнике, радиотехнике.4. Поливинилхлорид трудногорюч, механически прочен, электроизоляционный материал.5. Политетрафторэтилен фторопласт диэлектрик не растворяется в органических растворителях. Обладает высокими диэлектрическими свойствами в широком диапазоне температур (от -270 до 260ºС). Применяется также как антифрикционный и гидрофобный материал.6. Полиметилметакрилат плексиглас - применяется в электротехнике как конструкционный материал.7. Полиамид – обладает высокой прочностью, износостойкостью, высокими диэлектрическими свойствами. 8. Синтетические каучуки (эластомеры).9. Фенолформальдегидные смолы основа клеев, лаков, пластмасс.

Почти в 10 раз легче пробки (средняя плотность не более 20 кг/м 3 );

Коэффициент теплопроводности 0,03 вт/(м× К).

Обугливается, но не горит в открытом пламени при 500 °С, а при введении в композицию антипиренов не воспламеняется в среде кислорода.

Обладает значительным водопоглощением и чувствительностью к воздействию агрессивных химических реагентов. При хранении и эксплуатации её защищают целлофаном или полиэтиленовой плёнкой.

Применяют в качестве тепло- и звукоизоляционного материала в строительстве, при изготовлении холодильных установок, хранилищ и сосудов для перевозки жидкого кислорода, как заполнитель пустотелых конструкций в транспортном машиностроении.

Карбамидный клей

клей на основе мочевиноформальдегидных смол и меламиноформальдегидных смол (так называемых карбамидных смол), а также их смесей.

в больших количествах применяют в деревообрабатывающей промышленности при изготовлении фанеры, мебели и др.; используют для склеивания фосфора и металла.

представляет собой водный раствор карбамидной смолы. Часто в состав клея входит отвердитель (щавелевая, фталевая, соляная кислоты или некоторые соли) и наполнитель (мука бобовых или злаков, крахмал, древесная мука, гипс и т.п.).

Например , клей К-17 состоит

из 100 частей (по массе) смолы МФ-17, 7 - 22 частей 10%-ного водного раствора щавелевой кислоты, 6-8 частей древесной муки.

может отверждаться как при нагревании, так и при нормальной температуре (только в присутствии отвердителя).

Полиамиды

твердые полупрозрачные и непрозрачные пластики, размягчающиеся при температуре 150-180°С. Отличаются высокими химической стойкостью, прочностью, устойчивостью к трению, упругостью. Полиамиды плохо воспламеняются, горят синеватым пламенем, издавая запах жженой кости.

Протеины (белки), такие как шелк, на смену которым пришел найлон, также являются полиамидами.

Строение полиамидов

Отличительной чертой полиамидов является наличие в основной молекулярной цепи повторяющейся амидной группы –C(O)–NH–. Различают алифатические и ароматические полиамиды. Известны полиамиды, содержащие в основной цепи как алифатические, так и ароматические фрагменты.

Макромолекулы полиамидов состоят из гибких метиленовых цепочек и регулярно расположенных вдоль цепи полярных амидных групп.

амид уксусной кислоты (ацетамид)

Амиды – функциональные производные карбоновых кислот, в которых гидроксил –ОН в карбоксильной группе –СООН замещен на аминогруппу –NH2 .

Способы получения полиамидов

1. поликонденсация (эта реакция, называется полиамидированием ) дикарбоновых кислот (или их диэфиров)

и диаминов.

Поликонденсацию проводят преимущественно в расплаве, реже в растворе высококипящего растворителя или в твердой фазе.

Для получения полиамидов высокой молекулярной массы из дикарбоновых кислот и диаминов полиамидирование проводят при эквимолярных

соотношениях исходных веществ.

Таким образом получают полиамиды идущие на производство волокон типа анид (НАЙЛОН ).

2. Поликонденсация диаминов, динитрилов и воды в присутствии катализаторов. Например кислородных соединений фосфора и бора, в частности смеси фосфористой и борной кислот.

Процесс проводят при 260-300 °С. Вначале под давлением, периодически выпуская из зоны реакции выделяющийся аммиак. Заканчивают при атмосферном давлении.

Нитрилы - органические соединения общей формулы R-C≡N, формально являющиеся производными синильной кислоты HC≡N.

3. Полимеризация аминокислот лактамов. Главным образом, капролактама. Процесс проводят в присутствии воды, спиртов, кислот, оснований и других веществ, способствующих раскрытию цикла, или в присутствии катализаторов, в растворе или расплаве при высокой температуре.

капролактам

Лактам - циклический амид

Таким образом получают капрон и энант .

Получение капрона

Гидролиз капролактама

Поликонденсация

NH2 -(CH2 ) 5 - COOH + NH2 -(CH2 ) 5 - COOH + ... →

NH2 -(CH2 ) 5 - CO - NH -(CH2 ) 5 - CO - ... + n H2 O Упрощенная схема

В промышленности его получают из капролактама. Процесс ведется в присутствии воды, играющей роль активатора, при температуре 240-270° С и давлении 15-20 кгс/см2 в атмосфере азота.

Полимер образуется благодаря взаимодействию амино - и карбоксильных групп молекул исходных веществ или благодаря соединению разомкнувшихся молекул лактама .

Для производства стабильных по свойствам полиамидов и регулирования их молекулярной массы процессы ведут часто в присутствии регуляторов молекулярной массы – чаще всего уксусной кислоты.

Они присоединяются к реакционноспособным концевым группам растущей цепи и блокируют их, прекращая дальнейший рост молекул.

В названиях алифатических полиамидов после слова "полиамид" (в зарубежной литературе-"найлон") ставят цифры, обозначающие число атомов углерода в веществах, использованных для синтеза полиамида.

Полиамид на основе гексаметилендиамида и адипиновой

кислоты называется полиамидом-6,6 , или найлоном-6,6

первая цифра показывает число атомов углерода в диамине, вторая -в дикарбоновой кислоте.

Материал к уроку химии в 11 классе

УМК О.С. Габриеляна


  • ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов.
  • Термин «полимеры введен Й. Я. Берцелиусом в 1833.

  • По происхождению полимеры делят на природные , или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.


  • По строению макромолекулы подразделяются на линейные , схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные , имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

  • Реакцию образования полимера из мономера называют полимеризацией . В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

  • n СН 2 = СН → (- СН 2 – СН-) n

пропилен полипропилен

Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.


  • Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

  • n С 6 Н 12 О 6 → (- С 6 Н 10 О 5 -) n + Н 2 О

глюкоза полисахарид


  • Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

Полиамиды - высокомолекулярные соединения, относящиеся к гетероцепным полимерам, в основной цепи которых содержатся амидные связи, посредством которых соединены между собой мономерные остатки. Примером полиамидов является найлон. Поэтому рассмотрим полиамиды на примерах полимерах и найлона.

Полимеры

Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами. В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Поделиться